臺灣綜合大學系統112學年度學士班轉學生聯合招生
科目名稱:微積分A
解答:limx→44−x2−√x=limx→4ddx(4−x)ddx(2−√x)=limx→4−1−12√x=limx→42√x=4解答:令{P(t,√t)∈y=√xQ(1,0)⇒¯PQ=√(t−1)2+t=√t2−t+1令f(t)=t2−t+1⇒f′(t)=2t−1=0⇒f(t=12)為最小值⇒P(12,√22)
解答:f(x)=∫ex2√1+t2dt⇒f′(x)=ex√1+e2x又f(x)=0⇒ex=2⇒x=ln2⇒f′(ln2)=2√1+4=2√5⇒(f−1)′(0)=1f′(ln2)=12√5=√510
解答:r=sin3(θ/3)⇒drdθ=3sin2(θ/3)cos(θ/3)⋅13=sin2θ3cosθ3因此曲線長=∫π0√r2+(drdθ)2dθ=∫π0√sin6θ3+sin4θ3cos2θ3dθ=∫π0√sin4θ3dθ=∫π0sin2θ3dθ=12∫π01−cos2θ3dθ=12[θ−32sin2θ3]|π0=12π−38√3
解答:令an=(−1)n2n√nxn⇒limn→∞|an+1an|=limn→∞|(−1)n+12n+1xn+1√n+1⋅√n(−1)n2nxn|=limn→∞2√n|x|√n+1=limn→∞2|x|<1⇒|x|<12⇒收斂半徑=12 又{x=12⇒∑∞n=1an=∑∞n=1(−1)n√n收斂(依交錯級數審斂法)x=−12⇒∑∞n=1an=∑∞n=11√n發散(1√n≥1n發散)⇒收斂區間:(−12,12]
解答:r(t)=cos3ti+sin3tj+4tk⇒r′(t)=−3sin3ti+3cos3tj+4k⇒unit tangent vector T(t)=r′(t)‖
解答:令F(x,y,z)=x+2y+3z-\sin(xyz) \Rightarrow \cases{F_x=1-yz\cos(xyz) \\ F_y=2-xz \cos(xyz) \\ F_z=3-xy\cos(xyz)} \\ \Rightarrow \nabla F(2,-1,0)=(F_x(2,-1,0),F_y(2,-1,0),F_z(2,-1,0)) =(1,2,5) \\ \Rightarrow \cases{\text{tangent plane: } 1(x-2)+2(y+1)+5(z-0)=0 \Rightarrow \bbox[red, 2pt]{x+2y-5z+2=0} \\\text{normal line: } \bbox[red, 2pt]{{x-2\over 1}={y+1\over 2}={ z\over 5}}}
解答:
\cases{x=\sqrt{1-y^2} \Rightarrow x^2+y^2=1\\ x=\sqrt 3y} \Rightarrow 積分區域為夾角30^\circ的扇形區域,見上圖\\ 取\cases{x=r\cos \theta\\ y=r\sin \theta} \Rightarrow \int_0^{1/2} \int_{\sqrt 3y}^{\sqrt{1-y^2}} x^2y\,dxdy =\int_0^{\pi /6} \int_0^1r^2\cos^2 \theta\cdot r\sin\theta\cdot r\,drd\theta \\\int_0^{\pi /6} \int_0^1 r^4\cos^2\theta \sin \theta \,drd\theta ={1\over 5} \int_0^{\pi/6} \cos^2\theta \sin\theta \,d\theta ={1\over 5} \left.\left[ -{1\over 3}\cos^3 \theta \right] \right|_0^{\pi/6} \\={1\over 5}\cdot {1\over 3}(1-{3\sqrt 3\over 8}) =\bbox[red, 2pt]{{1\over 15}-{\sqrt 3\over 40}}
解答:取\cases{x(t)=\cos t\\ y(t)= \sin t},0\le t\le 2\pi \Rightarrow \cases{dx = -\sin tdt\\ dy=\cos t dt\\ ye^{xy}= \sin te^{\sin(2t)/2} \\ xe^{xy}= \cos te^{\sin(2t)/2}} \\ \Rightarrow \int_C \mathbf F\cdot d\mathbf r =\int_0^{2\pi } \sin te^{\sin(2t)/2}\cdot (-\sin tdt)+ \cos te^{\sin(2t)/2}\cdot \cos tdt \\=\int_0^{2\pi } e^{\sin(2t)/2}(\cos^2t-\sin^2 t)\,dt=\int_0^{2\pi } e^{ \sin(2t)/2}\cos(2t)\,dt =\left. \left[ e^{\sin(2t)/2} \right] \right|_0^{2\pi}= \bbox[red, 2pt]0
解答:利用散度定理來求解,div \mathbf F= \frac{\partial }{\partial x}F_1 + \frac{\partial }{\partial y}F_2 + \frac{\partial }{\partial z}F_3 =z^2+ x^2+ y^2=1 \\ \Rightarrow \iint_S \mathbf F\cdot d\mathbf S =\iiint_V div \mathbf F\,dV =\iiint_V 1\,dV=半球體積=\bbox[red, 2pt]{{2\over 3}\pi}
解答:取\cases{x(t)=\cos t\\ y(t)= \sin t},0\le t\le 2\pi \Rightarrow \cases{dx = -\sin tdt\\ dy=\cos t dt\\ ye^{xy}= \sin te^{\sin(2t)/2} \\ xe^{xy}= \cos te^{\sin(2t)/2}} \\ \Rightarrow \int_C \mathbf F\cdot d\mathbf r =\int_0^{2\pi } \sin te^{\sin(2t)/2}\cdot (-\sin tdt)+ \cos te^{\sin(2t)/2}\cdot \cos tdt \\=\int_0^{2\pi } e^{\sin(2t)/2}(\cos^2t-\sin^2 t)\,dt=\int_0^{2\pi } e^{ \sin(2t)/2}\cos(2t)\,dt =\left. \left[ e^{\sin(2t)/2} \right] \right|_0^{2\pi}= \bbox[red, 2pt]0
解答:利用散度定理來求解,div \mathbf F= \frac{\partial }{\partial x}F_1 + \frac{\partial }{\partial y}F_2 + \frac{\partial }{\partial z}F_3 =z^2+ x^2+ y^2=1 \\ \Rightarrow \iint_S \mathbf F\cdot d\mathbf S =\iiint_V div \mathbf F\,dV =\iiint_V 1\,dV=半球體積=\bbox[red, 2pt]{{2\over 3}\pi}
================== END ====================
解答僅供參考,其他歷年試題及詳解
第7題且平面答案有錯
回覆刪除正確的答案是? 我看了半天,覺得沒錯!!
刪除(x-2)+2(y+1)+5z=0 應該要是x-2y+5z=0 因為-2跟+2會消掉
刪除第7題切平面答案是x+2y+5z=0
回覆刪除YES, 已修訂
刪除喔對是加2y沒錯寫錯
回覆刪除第十題z^2+x^2+y^2不能直接用s去帶入吧
回覆刪除高斯定理 不是 delta F dV嗎
∇⋅F=div F=∂∂xF1+∂∂yF2+∂∂zF3 這兩個是一樣的意思
刪除第九題可以用格林定理嗎
回覆刪除可以
刪除