Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

2023年11月7日 星期二

112年升官等-微積分詳解

 112年公務人員升官等考試

等 級: 薦任
類科( 別): 物理
科 目: 微積分
考試時間: 2 小時

解答: F(x)=15(f(x))4=(f(x))4/5F(x)=45(f(x))9/5f(x)F(2)=45329/520=4512920=2429=132

解答: limx3x2+165(x3)=limx3ddx(x2+165)ddx(x3)=limx3xx2+161=35

解答: y2+2xy=x3+x+12yy+2y+2xy=3x2+1y=3x2+12y2x+2yy(1,1)=24:y=24(x1)+1x2y+1=0

解答: y=f(x)=64x3x3=64y2x=364y2f1(x)=g(x)=364x20x40f(x)80g(x)4{:[8,8]:[0,4]

解答: f(x)=(x6)(x+2)3f(x)=(x+2)3+3(x6)(x+2)2=4(x4)(x+2)2f

解答: u= x^3 \Rightarrow du=3x^2\,dx \Rightarrow \int {x^5\over \sqrt{1-2x^3}}\,dx = {1\over 3}\int {u\over \sqrt{1-2u}}\,du\\ 又令v=1-2u \Rightarrow dv=-2du \Rightarrow {1\over 3}\int {u\over \sqrt{1-2u}}\,du={1\over 3}\int {(1-v)/2\over \sqrt v}\cdot -{1\over 2}dv \\=-{1\over 12}\int {1-v\over \sqrt v}\,dv =-{1\over 12}\int {1\over \sqrt v}-\sqrt v\,dv =-{1\over 12}\left( 2\sqrt v-{2\over 3}v^{3/2} \right)+C \\=-{1\over 6}\left(  \sqrt{1-2u}-{1\over 3}(1-2u)^{3/2}\right) +C =-{1\over 6}\left(  \sqrt{1-2x^3}-{1\over 3}(1-2x^3)^{3/2}\right) +C \\= \sqrt{1-2x^3}\left(-{1\over 6}+{1\over 18}(1-2x^3) \right)+C =\bbox[red, 2pt]{-{1\over 9}(x^3+1)\sqrt{1-2x^3}+C}

解答: \Gamma(t)=\int_0^\infty e^{-x}x^{t-1}\,dx \Rightarrow \Gamma(\alpha+\beta)= \int_0^\infty e^{-x} x^{\alpha+\beta-1} \,dx \\ \Rightarrow {1\over \Gamma(\alpha)\Gamma(\beta)} \int_0^1 y^{\alpha+1}(1-y)^{\beta-1}\left( \int_0^\infty x^{\alpha+\beta-1} e^{-x}\,dx\right)\,dy ={\Gamma(\alpha+\beta)\over \Gamma(\alpha)\Gamma(\beta)} \int_0^1 y^{\alpha+1}(1-y)^{\beta-1}\,dy\\ 又\int_0^1 x^{\alpha}(1-x)^{\beta-1}\,dx ={\Gamma(\alpha+1)\Gamma(\beta) \over \Gamma(\alpha+\beta+1)}\\ \Rightarrow {\Gamma(\alpha+\beta)\over \Gamma(\alpha)\Gamma(\beta)} \int_0^1 y^{\alpha+1}(1-y)^{\beta-1}\,dy= {\Gamma(\alpha+ \beta)\over \Gamma(\alpha) \Gamma(\beta)}\cdot {\Gamma(\alpha+2) \Gamma(\beta)\over \Gamma(\alpha+\beta+2)} \\= {\Gamma(\alpha+ \beta)\over \Gamma(\alpha) \Gamma(\beta)}\cdot {\alpha(\alpha+1)\Gamma(\alpha) \Gamma(\beta)\over (\alpha+\beta+1)(\alpha +\beta) \Gamma(\alpha+\beta)} =\bbox[red, 2pt]{\alpha(\alpha+1) \over (\alpha+\beta+1) (\alpha+ \beta)}

======================= END ========================

解題僅供參考,其他歷年試題及詳解

2 則留言:

  1. 第三題詳解第一行左右微分完後右式應該是3X^2+1。詳解寫成3X^2+2

    回覆刪除