國立成功大學113學年度碩士班招生考試
系所:資源工程學系
科目:工程數學
解答:(a)dydx=y+x2⇒y′−y=x2⇒e−xy′−ye−x=x2e−x⇒(e−xy)′=x2e−x⇒e−xy=∫x2e−xdx=−e−x(x2+2x+2)+c1⇒y=−(x2+2x+2)+c1ex⇒y(0)=−2+c1=1⇒c1=3⇒y=3ex−(x2+2x+2)(b)y″+y=0⇒yh=c1cosx+c2sinx⇒yp=Axcosx+Bxsinx⇒y′p=Acosx+Bsinx−Axsinx+Bxcosx⇒y″p=−2Asinx+2Bcosx−Axcosx−Bxsinx⇒y″p+yp=−2Asinx+2Bcosx=cos(x)⇒{A=0B=1/2⇒yp=12xsinx⇒y=yh+yp=c1cosx+c2sinx+12xsinx⇒y′=(12−c1)sinx+c2cosx+12xcosx⇒{y(0)=c1=0y′(0)=c2=0⇒y=12xsinx解答:(a)L{exp(3t−2)}=∫∞0e3t−2e−stdt=e−2∫∞0e(3−s)tdt=e−2[13−se(3−s)t]|∞0=e−2s−3(b)L−1{s+2(s+1)s}=L−1{2s−1s+1}=L−1{2s}−L−1{1s+1}=2−e−t
解答:(a-1)A=[1112112112112111]R2−R1→R2,R3−R1→R3,R4−2R1→R4→[1112001−1010−10−1−1−3]R1−R3→R1,R1+R4→R4→[1013001−1010−100−1−4]R4+R2→R4→[1013001−1010−1000−5]R2↔R3,R4=R4/(−5)→[1013010−1001−10001]R1−R3→R1,R2+R4→[10040100001−10001]R1−4R4→R1,R3+R4→R3→[1000010000100001]=I4⇒rref(A)=[1000010000100001](a-2)rref(A)=I4⇒rank(A)=4⇒nullity(A)=4−rank(A)=0(b)B=[1111]⇒det(B−λI)=0⇒λ2−2λ=0⇒λ=0,2λ1=0⇒(B−λ1I)v=0⇒[1111][x1x2]=0⇒x1+x2=0⇒v=x2(−11),取v1=(−11)λ2=2⇒(B−λ2I)v=0⇒[−111−1][x1x2]=0⇒x1=x2⇒v=x2(11),取v2=(11)因此 eigenvalues: 0,2 and the corresponding eigenvectors: (−11),(11)
解答:(a)→F=3x2y3→i−2y3z2→j+x3z2→k⇒curl →F=|→i→j→k∂∂x∂∂y∂∂z→F1→F2→F3|=|→i→j→k∂∂x∂∂y∂∂z3x2y3−2y3z2x3z2|=0→i+0→j+0→k−9x2y2→k−3x2z2→j+4y3z→i⇒curl →F(2,−1,1)=−4→i−12→j−36→k(b){f(x,y,z)=xy2z3⇒∇f=(y2z3,2xyz3,−3xy2z4)→n=2→i+2→j+1→k⇒→n|→n|=23→i+23→j+13→k⇒∇f⋅→n|→n|=23⋅y2z3+23⋅2xyz3−13⋅3xy2z4⇒∇f(3,2,1)⋅→n|→n|=83+8−12=−43
(c)Let M(x,y) and N(x,y) be continuous and have continuous partial derivatives in a region R and on its boundary C. Then, for both simply-connected and multiply-connected R.∮C(Mdx+Ndy)=∬
(d) Let S be an oriented smooth surface that is bounded by a simple, closed, smooth boundary curve C with positive orientation. Also let \vec F be a vector field then,\int_C \vec F\cdot d\vec r= \iint_S \text{curl }\vec F\cdot d\vec S
解答:\textbf{(a)}\;a_0= {1\over 2}\int_{-1}^1 f(x) \,dx = {1\over 2}\int_{0}^1 1\,dx ={1\over 2} \\ a_n= \int_0^1\cos(n\pi x)\,dx =\left.\left[{1\over n\pi} \sin(n\pi x) \right] \right|_0^1=0\\ b_n= \int_0^1 \sin(n\pi x)\,dx =\left.\left[-{1\over n\pi} \cos(n\pi x) \right] \right|_0^1= {1\over n\pi}(1-(-1)^n) \\ \Rightarrow f(x)=\bbox[red, 2pt]{{1\over 2}+\sum_{n=1}^\infty {1\over n\pi}(1-(-1)^n) \sin(n\pi x)} \\ \textbf{(b)}\;\mathcal F(\omega) =\int_{-\infty}^\infty f(t)e^{-j\omega t}\,dt =\int_0^\infty ke^{-at} e^{-j\omega t}\,dt = k\int_0^\infty e^{-(a+j\omega) t}\,dt =k \left. \left[-{1\over a+j\omega} e^{-(a+j\omega) t}\right] \right|_0^\infty \\= \bbox[red, 2pt]{k\over a+j\omega}
================= END ===================
解題僅供參考,其他碩士班歷年試題及詳解
第三題的(b)eigenvalues已求錯,故eigenvectors 也不對.
回覆刪除第四題的(b)方向導數不對,因為那單位向量是(2/3,2/3,1/3)
謝謝告知,已修訂
刪除