Loading [MathJax]/jax/element/mml/optable/MathOperators.js

2024年9月2日 星期一

113年成大資源工程碩士班-工程數學詳解

 國立成功大學113學年度碩士班招生考試

系所:資源工程學系
科目:工程數學

解答:(a)dydx=y+x2yy=x2exyyex=x2ex(exy)=x2exexy=x2exdx=ex(x2+2x+2)+c1y=(x2+2x+2)+c1exy(0)=2+c1=1c1=3y=3ex(x2+2x+2)(b)y+y=0yh=c1cosx+c2sinxyp=Axcosx+Bxsinxyp=Acosx+BsinxAxsinx+Bxcosxyp=2Asinx+2BcosxAxcosxBxsinxyp+yp=2Asinx+2Bcosx=cos(x){A=0B=1/2yp=12xsinxy=yh+yp=c1cosx+c2sinx+12xsinxy=(12c1)sinx+c2cosx+12xcosx{y(0)=c1=0y(0)=c2=0y=12xsinx
解答:(a)L{exp(3t2)}=0e3t2estdt=e20e(3s)tdt=e2[13se(3s)t]|0=e2s3(b)L1{s+2(s+1)s}=L1{2s1s+1}=L1{2s}L1{1s+1}=2et


解答:(a-1)A=[1112112112112111]R2R1R2,R3R1R3,R42R1R4[1112001101010113]R1R3R1,R1+R4R4[1013001101010014]R4+R2R4[1013001101010005]R2R3,R4=R4/(5)[1013010100110001]R1R3R1,R2+R4[1004010000110001]R14R4R1,R3+R4R3[1000010000100001]=I4rref(A)=[1000010000100001](a-2)rref(A)=I4rank(A)=4nullity(A)=4rank(A)=0(b)B=[1111]det(BλI)=0λ22λ=0λ=0,2λ1=0(Bλ1I)v=0[1111][x1x2]=0x1+x2=0v=x2(11),v1=(11)λ2=2(Bλ2I)v=0[1111][x1x2]=0x1=x2v=x2(11),v2=(11) eigenvalues: 0,2 and the corresponding eigenvectors: (11),(11)
解答:(a)F=3x2y3i2y3z2j+x3z2kcurl F=|ijkxyzF1F2F3|=|ijkxyz3x2y32y3z2x3z2|=0i+0j+0k9x2y2k3x2z2j+4y3zicurl F(2,1,1)=4i12j36k(b){f(x,y,z)=xy2z3f=(y2z3,2xyz3,3xy2z4)n=2i+2j+1kn|n|=23i+23j+13kfn|n|=23y2z3+232xyz3133xy2z4f(3,2,1)n|n|=83+812=43
(c)Let M(x,y) and N(x,y) be continuous and have continuous partial derivatives in a region R and on its boundary C. Then, for both simply-connected and  multiply-connected R.C(Mdx+Ndy)=
(d) Let S be an oriented smooth surface that is bounded by a simple, closed, smooth boundary curve C with positive orientation. Also let \vec F be a vector field then,\int_C \vec F\cdot d\vec r= \iint_S \text{curl }\vec F\cdot d\vec S
解答:\textbf{(a)}\;a_0= {1\over 2}\int_{-1}^1 f(x)  \,dx = {1\over 2}\int_{0}^1   1\,dx  ={1\over 2} \\ a_n= \int_0^1\cos(n\pi x)\,dx =\left.\left[{1\over n\pi} \sin(n\pi x) \right] \right|_0^1=0\\ b_n= \int_0^1 \sin(n\pi x)\,dx =\left.\left[-{1\over n\pi} \cos(n\pi x) \right] \right|_0^1= {1\over n\pi}(1-(-1)^n) \\ \Rightarrow f(x)=\bbox[red, 2pt]{{1\over 2}+\sum_{n=1}^\infty  {1\over n\pi}(1-(-1)^n) \sin(n\pi x)} \\ \textbf{(b)}\;\mathcal F(\omega) =\int_{-\infty}^\infty f(t)e^{-j\omega t}\,dt =\int_0^\infty ke^{-at} e^{-j\omega t}\,dt = k\int_0^\infty   e^{-(a+j\omega) t}\,dt =k \left. \left[-{1\over a+j\omega} e^{-(a+j\omega) t}\right] \right|_0^\infty \\= \bbox[red, 2pt]{k\over a+j\omega}

================= END ===================
解題僅供參考,其他碩士班歷年試題及詳解

2 則留言:

  1. 第三題的(b)eigenvalues已求錯,故eigenvectors 也不對.
    第四題的(b)方向導數不對,因為那單位向量是(2/3,2/3,1/3)

    回覆刪除