Processing math: 100%

2024年9月15日 星期日

113年新竹女中教甄-數學詳解

 國立新竹女子高級中學113 學年度第1學期第1次教師甄選

一、填充題:每題5 分,共50 分

解答:{|w|=3|z|=4{w=3eiθ1z=4eiθ2wz=34ei(θ1θ2)=34cos(θ1θ2)+34isin(θ1θ2)wzz=wz1=34cos(θ1θ2)1+34isin(θ1θ2)tanθ=34sin(θ1θ2)34cos(θ1θ2)1=3sinα3cosα4=k4k=3kcosα3sinα4k9k2+916k29k2+9tan2θ=k297
解答:f(x)=2x+9x2+16f(x)=2+9x9x2+16=081x2=36x2+64x2=6445x=±835=±8515f(8515)=16515+645+16=453(α,β)=(8515,453)
解答:
{A(0,0)B(43,0)C(23cos60,23sin60)=(3,3)¯ADA¯CD¯DB=¯AC¯ABD=13(2C+B)=(23,2)L=AD:3y=xP(3t,t){PA=(3t,t)PB=(433t,t)PC=(33t,3t)(PB+2PC)PA=(6333t,63t)(3t,t)=12t224t=12(t1)212=12

解答:=4A,{A(0,0,0)B(3,0,0)C(3,3,0)D(0,3,0)E(3,2,0)F(2,3,0)G(t,t,a){¯AG=3¯GE=2{t2+t2+a2=9(t3)2+(t2)2+a2=4{t=9/5a=37/5G(95,95,375){AF=(2,3,0)AG=(95,95,375)n=AF×AG(37,27,3){AEG:37x27y3z=0AECF:z=0cosθ=(37,27,3)(0,0,1)|(37,27,3)|=310sinθ=9110
解答:
5460ABCDEAB,C,D,E60{¯ABCDP¯AECDQAPQ,PBCADE{¯PB=a¯QD=b¯CD=x,5x+b,a,x,b,x+a,16:xab115152521414163131394121245111:55=5565
解答:[log21x]={1,21x<414<x123,81x<16116<x185,321x<64164<x132[log31y]={1,31y<919<y133,271y<81181<y1275,2431y<7291729<x1243=((1214)+(18116+(132164)+)×((1319)+(127181)+(12431729)+)=(14+116+164+)(29+281+2729+)=1314=112

解答:a,C2024a999,a=1,2,1025(=2024999)1025a=1aC2024a9991025a=1C2024a999=C20251001C20241000=20251001:C20241000=C20231000+C2023999=C20221000+C2022999+C2023999=C20211000+C2021999+C2022999+C2023999==C999999+C1000999++C2022999+C20239991025a=1C2024a999=C20241000:1025a=1aC2024a999=1025a=1C2024a999+1024a=1C2023a999+1023a=1C2022a999++2a=1C1001a999+1a=1C1000a999=C20241000+C20231000+C20221000++C10011000+C10001000=C20051001
解答:limn3n1k=nn2ak=limn3n1k=nn2k3=limn3n1k=n1/n(k/n)3=311x3dx=[12x2]|31=49


解答:

{A(1,3)B(1,3)P¯ABP(1,t),3t3¯OP=1+t21¯OP2Q(x,y)OPy=tx{¯OP=1+y2/x2¯OQ=x2+y2(1+y2x2)(x2+y2)=42(x2+y2)2(4x)2=0(x2+4x+y2)(x24x+y2)=((x+2)2+y24)((x2)2+y24)=0Q(x,y)OPx0(x+2)2+y2=4,(x2)2+y2=41¯OP22¯OQ4x1Q,x123=232π2=83π



解答:E(X)=0(1Ni=1(1epix))dx=0(1(1ex/2)(1ex/3)(1ex/6))dx=0(ex/6+ex/3e2x/3e5x/6+ex)dx=0(63+32+651)=7310,
========================== END ===============================

沒有留言:

張貼留言