國立成功大學113學年度碩士班招生考試
系所:環境工程學系
科目:工程數學
解答:A.Case I λ=0⇒y″=0⇒y(x)=c1+c2x⇒{y(0)=0=c1y(3)=0=c1+3c2⇒c1=c2=0⇒y=0⇒ no eigenvalueCase II λ>0⇒r2+λ=0⇒r=±√λi⇒y=c1cos(√λx)+c2sin(√λx)⇒{y(0)=c1=0y(3)=c1cos(3√λ)+c2sin(3√λ)=0⇒sin(3√λ)=0⇒3√λ=nπ⇒λn=n2π29⇒yn(x)=sin(nπ3x),n=1,2,…Case III λ<0⇒r=±√−λ⇒y(x)=c1cosh(√−λx)+c2sinh(√−λx)⇒{y(0)=c1=0y(3)=c2sinh(√−λx)=0⇒c1=c2=0⇒y=0⇒ no eigenvalueIn summary, we have eigenvalues: λn=n2π29 and eigenfunctions: yn(x)=sin(nπ3x),n=1,2,3,⋯B.Case I λ=0⇒y″=0⇒y(x)=c1+c2x⇒y′(x)=c2⇒{y(0)=0=c1y′(π)=0=c1+c2π⇒c1=c2=0⇒y=0⇒ no eigenvalueCase II λ>0⇒r2+λ=0⇒r=±√λi⇒y=c1cos(√λx)+c2sin(√λx)⇒y′=−c1√λsin(√λx)+c2√λcos(√λx){y(0)=c1=0y′(π)=c2√λcos(√λπ)=0⇒cos(√λπ)=0⇒√λπ=2n−12π⇒λn=(2n−1)24⇒yn(x)=sin(2n−12x),n=1,2,…Case III λ<0⇒r=±√−λ⇒y(x)=c1cosh(√−λx)+c2sinh(√−λx)⇒y′=c1√−λsinh(√−λx)+c2√−λcosh(√−λx)⇒{y(0)=c1=0y′(π)=c2√−λcosh(√−λπ)=0⇒c1=c2=0⇒y=0⇒ no eigenvalueIn summary, we have eigenvalues: λn=(2n−1)24 and eigenfunctions: yn(x)=sin(2n−12x),n=1,2,3,⋯
解答:{x′=2x−7yy′=5x+10y+4zz′=5y+2z⇒[x′y′z′]=[2−705104052][xyz]≡X′=AXdet(A−λI)=0⇒λ=2,5,7λ1=2⇒ eigenvector v1=(−405),λ2=5⇒ eigenvector v2=(−735),λ3=7⇒ eigenvector v3=(−755)⇒X=c1e2tv1+c2e5tv2+c3e7tv3⇒{x(t)=−4c1e2t−7c2e5t−7c3e7ty(t)=3c2e5t+5c3e7tz(t)=5c1e2t+5c2e5t+5c3e7t
解答:y″+4y′+13y=0⇒λ2+4λ+13=0⇒λ=−4±6i2=−2±3i⇒y=e−2x(Acos(3x)+Bsin(3x))
解答:y″−3y′+2y=0⇒λ2−3λ+2=0⇒(λ−2)(λ−1)=0⇒λ=1,2⇒yh=c1ex+c2e2xyp=Acos(x)+Bsin(x)⇒y′p=−Asin(x)+Bcos(x)⇒y″p=−Acos(x)−Bsin(x)⇒y″p−3y′p+2yp=(A−3B)cos(x)+(3A+B)sinx=10sin(x)⇒{A−3B=03A+B=10⇒{A=3B=1⇒yp=3cos(x)+sin(x)⇒y=yh+yp ⇒y=c1ex+c2e2x+3cos(x)+sin(x)
解答:dydx=4x+6y10y−6x⇒(6x−10y)dy+(4x+6y)dx=0⇒∂∂x(6x−10y)=6=∂∂y(4x+6y)⇒it is exact ⇒Φ(x,y)=∫(6x−10y)dy=∫(4x+6y)dx⇒Φ(x,y)=6xy−5y2+ρ(x)=2x2+6xy+ϕ(x)⇒Φ(x,y)=2x2+6xy−5y2+c1=0
解答:λ2+7λ=0⇒λ=0,−7⇒y=c1+c2e−7x⇒y′=−7c2e−7x⇒{y(0)=c1+c2=1y′(0)=−7c2=7⇒{c1=2c2=−1⇒y=2−e−7x
解答:a0=12π∫π−πf(x)dx=12π∫π03dx=32an=1π∫π03cos(nx)dx=0bn=1π∫π03sin(nx)dx=3nπ(1−(−1)n)⇒f(x)=32+3π∞∑n=11n(1−(−1)n)
解答:A.Let u(x,y)=X(x)Y(y), then uxx+uyy=0⇒X″Y+XY″=0⇒X″X=−Y″Y=λ⇒{X″=λXY″=−λYboundary conditions: (B.C.){ux(0,y)=0ux(1,y)=0u(x,0)=0⇒{X′(0)=0X′(1)=0Y(0)=0Case I λ=0⇒X″=0⇒X=c1x+c2⇒X′=c1⇒X′(0)=0⇒c1=0⇒X=c2Case II λ>0⇒λ=ρ2 for some ρ>0⇒X″−ρ2X=0⇒X=c1eρx+c2e−ρx⇒X′=c1ρeρx−c2ρe−ρx⇒B.C.{ρ(c1−c2)=0ρ(c1e2−c2)=0⇒c1=c2=0⇒X=0Case III λ<0⇒λ=−ρ2⇒X″+ρ2X=0⇒X=c1cos(ρx)+c2sin(ρx)⇒X′=−c1ρsin(ρx)+c2ρcos(ρx)⇒B.C.{c2ρ=0−c1ρsin(ρ)+c2ρcos(ρ)=0⇒c2=0⇒sin(ρ)=0⇒ρ=nπ⇒X=c1cos(nπx)Now we need to find the corresponding Y.Case I λ=0⇒Y″=0⇒Y=c1y+c2⇒B.C.y(0)=c2=0⇒y=c1y⇒u(x,y)=c1y⋅c2=C0yCase III λ<0⇒λ=−ρ2=−n2π2⇒Y″=n2π2Y⇒Y=c1cosh(nπy)+c2sinh(nπy)⇒B.C.y(0)=c1=0⇒Y=c2sinh(nπy)⇒u(x,y)=c1c2cos(nπx)sinh(nπy)=Cncos(nπx)sinh(nπy)At last, we have u(x,y)=C0y+∞∑n=1Cncos(nπx)sinh(nπy)⇒u(x,1)=5⇒5=C0+∞∑n=1Cncos(nπx)sinh(nπ)⇒C0=∫105dx=5⇒Cnsinh(nπ)=2∫105cos(nπx)dx=0⇒Cn=0⇒u(x,y)=5y
============================= END ===========================
解題僅供參考,其他碩士班試題及詳解
沒有留言:
張貼留言