Loading [MathJax]/jax/output/CommonHTML/jax.js

2024年9月4日 星期三

113年成大環工碩士班-工程數學詳解

 國立成功大學113學年度碩士班招生考試

系所:環境工程學系
科目:工程數學


解答:A.Case I λ=0y=0y(x)=c1+c2x{y(0)=0=c1y(3)=0=c1+3c2c1=c2=0y=0 no eigenvalueCase II λ>0r2+λ=0r=±λiy=c1cos(λx)+c2sin(λx){y(0)=c1=0y(3)=c1cos(3λ)+c2sin(3λ)=0sin(3λ)=03λ=nπλn=n2π29yn(x)=sin(nπ3x),n=1,2,Case III λ<0r=±λy(x)=c1cosh(λx)+c2sinh(λx){y(0)=c1=0y(3)=c2sinh(λx)=0c1=c2=0y=0 no eigenvalueIn summary, we have eigenvalues: λn=n2π29 and eigenfunctions: yn(x)=sin(nπ3x),n=1,2,3,B.Case I λ=0y=0y(x)=c1+c2xy(x)=c2{y(0)=0=c1y(π)=0=c1+c2πc1=c2=0y=0 no eigenvalueCase II λ>0r2+λ=0r=±λiy=c1cos(λx)+c2sin(λx)y=c1λsin(λx)+c2λcos(λx){y(0)=c1=0y(π)=c2λcos(λπ)=0cos(λπ)=0λπ=2n12πλn=(2n1)24yn(x)=sin(2n12x),n=1,2,Case III λ<0r=±λy(x)=c1cosh(λx)+c2sinh(λx)y=c1λsinh(λx)+c2λcosh(λx){y(0)=c1=0y(π)=c2λcosh(λπ)=0c1=c2=0y=0 no eigenvalueIn summary, we have eigenvalues: λn=(2n1)24 and eigenfunctions: yn(x)=sin(2n12x),n=1,2,3,
解答:{x=2x7yy=5x+10y+4zz=5y+2z[xyz]=[2705104052][xyz]X=AXdet(AλI)=0λ=2,5,7λ1=2 eigenvector v1=(405),λ2=5 eigenvector v2=(735),λ3=7 eigenvector v3=(755)X=c1e2tv1+c2e5tv2+c3e7tv3{x(t)=4c1e2t7c2e5t7c3e7ty(t)=3c2e5t+5c3e7tz(t)=5c1e2t+5c2e5t+5c3e7t
解答:y+4y+13y=0λ2+4λ+13=0λ=4±6i2=2±3iy=e2x(Acos(3x)+Bsin(3x))
解答:y3y+2y=0λ23λ+2=0(λ2)(λ1)=0λ=1,2yh=c1ex+c2e2xyp=Acos(x)+Bsin(x)yp=Asin(x)+Bcos(x)yp=Acos(x)Bsin(x)yp3yp+2yp=(A3B)cos(x)+(3A+B)sinx=10sin(x){A3B=03A+B=10{A=3B=1yp=3cos(x)+sin(x)y=yh+yp y=c1ex+c2e2x+3cos(x)+sin(x)
解答:dydx=4x+6y10y6x(6x10y)dy+(4x+6y)dx=0x(6x10y)=6=y(4x+6y)it is exact Φ(x,y)=(6x10y)dy=(4x+6y)dxΦ(x,y)=6xy5y2+ρ(x)=2x2+6xy+ϕ(x)Φ(x,y)=2x2+6xy5y2+c1=0
解答:λ2+7λ=0λ=0,7y=c1+c2e7xy=7c2e7x{y(0)=c1+c2=1y(0)=7c2=7{c1=2c2=1y=2e7x
解答:a0=12πππf(x)dx=12ππ03dx=32an=1ππ03cos(nx)dx=0bn=1ππ03sin(nx)dx=3nπ(1(1)n)f(x)=32+3πn=11n(1(1)n)

解答:A.Let u(x,y)=X(x)Y(y), then uxx+uyy=0XY+XY=0XX=YY=λ{X=λXY=λYboundary conditions: (B.C.){ux(0,y)=0ux(1,y)=0u(x,0)=0{X(0)=0X(1)=0Y(0)=0Case I λ=0X=0X=c1x+c2X=c1X(0)=0c1=0X=c2Case II λ>0λ=ρ2 for some ρ>0Xρ2X=0X=c1eρx+c2eρxX=c1ρeρxc2ρeρxB.C.{ρ(c1c2)=0ρ(c1e2c2)=0c1=c2=0X=0Case III λ<0λ=ρ2X+ρ2X=0X=c1cos(ρx)+c2sin(ρx)X=c1ρsin(ρx)+c2ρcos(ρx)B.C.{c2ρ=0c1ρsin(ρ)+c2ρcos(ρ)=0c2=0sin(ρ)=0ρ=nπX=c1cos(nπx)Now we need to find the corresponding Y.Case I λ=0Y=0Y=c1y+c2B.C.y(0)=c2=0y=c1yu(x,y)=c1yc2=C0yCase III λ<0λ=ρ2=n2π2Y=n2π2YY=c1cosh(nπy)+c2sinh(nπy)B.C.y(0)=c1=0Y=c2sinh(nπy)u(x,y)=c1c2cos(nπx)sinh(nπy)=Cncos(nπx)sinh(nπy)At last, we have u(x,y)=C0y+n=1Cncos(nπx)sinh(nπy)u(x,1)=55=C0+n=1Cncos(nπx)sinh(nπ)C0=105dx=5Cnsinh(nπ)=2105cos(nπx)dx=0Cn=0u(x,y)=5y

============================= END ===========================

解題僅供參考,其他碩士班試題及詳解


沒有留言:

張貼留言