國立政治大學112學年度轉學生招生考試
科目:微積分(二)系所別:應用數學系二年級
解答:(a) lim解答:\textbf{(a) }{n\over \sqrt{3+n^p}} \lt {n\over \sqrt{n^p}} ={1\over n^{(p/2-1)}}\\ \text{By p-series test, if }{p\over 2}-1\gt 1 {(\bbox[red,2pt]{p\gt 4})}, \text{then } \sum_{n=1}^\infty {1\over n^{p/2-1}} \text{ will converge.} \\ \text{And by comparison-test, the series }\sum_{n=1}^\infty {n\over \sqrt{3+n^p}} \text{ will converge}\\ \textbf{(b) } \lim_{n\to \infty} \sum_{i=1}^n {3\pi\over 4n} \sec^2 \left({i \pi\over 4n} \right) =\int_0^1 {3\pi\over 4}\sec^2{\pi x\over 4}\,dx =3\left. \left[ \tan{\pi x\over 4} \right] \right|_0^1 =\bbox[red, 2pt]3
解答:\frac{d y}{dx} ={\sqrt{1-y^2} \over 1+x^2} \Rightarrow \int {1\over \sqrt{1-y^2}}dy = \int {1\over 1+x^2}\,dx \Rightarrow \arcsin y= \arctan x +C \\ \Rightarrow y= \sin \left( \arctan x +C \right) \Rightarrow y(0)= \sin C=0 \Rightarrow C=0 \Rightarrow y= \sin(\arctan x) \\ \Rightarrow \bbox[red, 2pt]{y={x\over \sqrt{1+x^2}}}
解答:\cases{x=\rho \sin \phi \cos \theta\\ y=\rho \sin \phi \sin \theta\\ z= \rho \cos \phi} \Rightarrow z=\rho \cos \phi=\sqrt{x^2+y^2}=\rho \sin \phi \Rightarrow \phi={\pi\over 4} \\ \Rightarrow V= \int_0^{\pi/2} \int_{\pi /4}^{\pi/2} \int_0^\sqrt{12} \rho^2 \sin \phi \,d\rho \,d\phi \,d\theta =8\sqrt 3\int_0^{\pi/2} \int_{\pi/4}^{\pi/2} \sin \phi \,d\phi\,d\theta =4\sqrt 6 \int_0^{\pi /2} 1\,d\theta = \bbox[red, 2pt]{2\sqrt 6\pi}
解答:r(t)=e^t \mathbf i+(1+t) \mathbf j \Rightarrow r'(t)=e^t \mathbf i+ \mathbf j \\ \Rightarrow \int_C \mathbf F\cdot d\mathbf r = \int_0^1 ((e^t(1+t)^2 +2(1+t)) \mathbf i +(e^{2t}(1+t)+2e^t+2)\mathbf j) \cdot (e^t \mathbf i+\mathbf j)\,dt \\ =\int_0^1 (e^{2t}(1+t)(2+t)+2e^t(t+2)+2)\,dt =\left. \left[ {1\over 2} e^{2t} (t+1)^2+ 2e^t(t+1)+2t\right] \right|_0^1 = \bbox[red, 2pt]{2e^2+4e-{1\over 2}}
解答:r(t)=(2\cos t)\mathbf i+(2\sin t)\mathbf j \Rightarrow C:x^2+y^2=4 \\ \Rightarrow \int_C -y^3dx+x^3dy = \iint_D \left(\frac{\partial }{\partial x}x^3-\frac{\partial }{\partial y}(-y^3) \right) \,dA =\iint_D 3(x^2+y^2) dA\\ =3 \int_0^{2\pi} \int_0^2 r^2\cdot r\,drd\theta =3 \int_0^{2\pi}4\,d\theta = \bbox[red, 2pt]{24\pi}
======================= END ======================
解題僅供參考,轉學考歷年試題及詳解
第六題最後那個雙重積分.D表示的是以原點為圓心半徑為2的圓的區域,但不能直接把(x^2+y^2)看作4,要當作r^2下去做積分,答案應是24*pi.
回覆刪除謝謝,已修訂
刪除