國立臺灣科技大學110學年度碩士班招生考試
系所組別:機械工程系碩士班
科目:工程數學
解答:(a) xy″−y′=2x2⇒1xy″−1x2y′=2⇒(1xy′)′=2⇒1xy′=2x+c1⇒y′=2x2+c1x⇒y=23x3+c2x2+c3⇒{y(0)=c3=0y(1)=2/3+c2+c3=1⇒c2=13⇒y=23x3+13x2(b) y″+5y′+6y=0⇒λ2+5λ+6=0⇒(λ+3)(λ+2)=0⇒λ=−2,−3⇒yh=c1e−2x+c2e−3xUsing variations of parameters, let {y1=e−2xy2=e−3x⇒W(x)=|y1y2y′1y′2|=|e−2xe−3x−2e−2x−3e−3x|=−e−5x⇒yp=−e−2x∫e−3x⋅e−2x−e−5xdx+e−3x∫e−2x⋅e−2x−e−5xdx=e−2x∫1dx−e−3x∫exdx⇒yp=xe−2x−e−2x⇒y=yh+yp⇒y=c3e−2x+c2e−3x+xe−2x⇒{y(0)=c3+c2=0y(1)=(c3+1)e−2+c2e−3=e−3⇒{c2=1c3=−1⇒y=−e−2x+e−3x+xe−2x解答:L{f(t)}=L{e−tcost}s=1s⋅s+1(s+1)2+1=s+1s(s2+2s+2)
解答:f(t)+2∫t0f(τ)cos(t−τ)dτ=4e−t+sint⇒L{f(t)}+2L{∫t0f(τ)cos(t−τ)dτ}=4L{e−t}+L{sint}⇒F(s)+2L{f(t)}L{cost}=4⋅1s+1+1s2+1⇒F(s)+2F(s)⋅ss2+1=4s+1+1s2+1⇒F(s)=(4s+1+1s2+1)⋅s2+1(s+1)2=4(s2+1)(s+1)3+1(s+1)2=4s2+s+5(s+1)3⇒f(t)=L−1{F(s)}=L−1{4s2+s+5(s+1)3}=L−1{4s+1−7(s+1)2+8(s+1)3}⇒f(t)=4e−t−7te−t+4t2e−t
解答:A=[0−213]⇒det(A−λI)=(λ−1)(λ−2)=0⇒λ=1,2λ1=1⇒(A−λ1I)v=0⇒[−1−212][x1x2]=0⇒x1+2x2=0⇒v=x2(−21)choose v1=(−21)λ2=2⇒(A−λ2I)v=0⇒[−2−211][x1x2]=0⇒x1=−x2⇒v=x2(−11)choose v2=(−11)⇒A=[−2−111][1002][−2−111]−1⇒eA=[−2−111][e00e2][−2−111]−1=[2e−e22e−2e2−e+e2−e+2e2]
解答:u(x,t)=v(x,t)+uss(x)ussx=αx+β⇒{u(−1,t)=−α+β=2u(1,t)=α+β=4⇒{α=1β=3⇒uss(x)=x+3⇒u(x,0)=3+x+sin(2πx)−uss(x)=sin(2πx)⇒v(x,t)=∞∑n=1bne−n2π2t/4sinnπ2(x+1)⇒u(x,t)=x+3+∞∑n=1bne−n2π2t/4sinnπ2(x+1),where bn=∫1−1sin(2πx)sinnπ2(x+1)dx
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
沒有留言:
張貼留言