Loading [MathJax]/jax/output/CommonHTML/jax.js

2024年12月13日 星期五

110年台科大材料碩士班-工程數學詳解

 國立臺灣科技大學110學年度碩士班招生考試

系所組別:材料科學與工程系碩士班乙組
科目名稱:工程數學 

解答:xy+(1+x)y=exsin2xy+(1+1x)y=1xexsin2xintegration factor I(x)=e(1+1/x)dx=xexI(x)y+I(x)(1+1x)y=I(x)1xexsin2xxexy+(1+x)exy=sin2x(xexy)=sin2xxexy=12cos2x+c1y=12xexcos2x+c1xex

解答:z=2x1/3dzdx=23x2/3dydx=dydzdzdx=23x2/3dydzd2ydx2=49x5/3dydz+23x2/3d2ydz223x2/3=49x5/3dydz+49x4/3d2ydz29x2y+9xy+(4x2/316)y=9x2(49x5/3dydz+49x4/3d2ydz2)+9x(23x2/3dydz)+(4x2/316)y=4x2/3d2ydz2+2x1/3dydz+(4x2/316)y=z2d2ydz2+zdydz+(z242)y=0z2d2ydz2+zdydz(z242)y=0 is a Bessel function of the second kindy=c1Jv(z)+c2Yv(z)y=c1J4(2x1/3)+c2Y4(2x1/3)

解答:3y6y+30y=15sinx+excos3xy2y+10y=5sinx+ex3cos3xy2y+10y=0λ22λ+10=0λ=1±3iyh=ex(c1cos3x+c2sin3x)Let {y1=excos3xy2=exsin3x,then W=|y1y2y1y2|=|excos3xexsin3xexcos3x3exsin3xexsin3x+3excos3x|=3e2xUsing variation of parameters, yp=excos3xexsin3x(5sinx+ex3cos3x)3e2xdx+exsin3xexcos3x(5sinx+ex3cos3x)3e2xdxy=c1exsin(3x)+c2excos(3x)+917sinx+19xexsin(3x)+217cosx+127excos(3x)ln(cos3x)

解答:f(t)={20t<34t3L{f(t)}=0f(t)estdt=302estdt+34estdt=[2sest]|30+[4sest]|3=2s(1e3s)+4se3s=2s(1+e3s)L{y}4L{y}+4L{y}=L{f(t)}s2Y(s)sy(0)y(0)4(sY(s)y(0))+4Y(s)=2s(1+e3s)(s2)2Y(s)+2s9=2s(1+e3s)Y(s)=2s(s2)2(1+e3s)+92s(s2)2y(t)=L1{Y(s)}=2L1{1s(s22)}+2L1{e3ss(s2)2)}2L1{1s2}+5L1{1(s2)2}=12H(t)12e2t+te2t+H(t3)(1212e2(t3)+(t3)e2(t3))2e2t+5te2ty(t)=1252e2t+6te2t+12H(t3)(1+2te2(t3)7e2(t3))

解答:f(x)={x,0<x<π/2πx,π/2x<πf(x)=f(x)f(x) is evenf(x)=a0+n=1ancos(nx),where a0=1ππ0f(x)dx=1ππ24=π4,and an=2ππ0f(x)cos(nx)dx=2π(π/20xcos(nx)dx+ππ/2(πx)cos(nx)dx)=2π[xnsin(nx)+1n2cos(nx)]|π/20+2π[πxnsin(nx)1n2cos(nx)]|ππ/2=2n2π(2cos(nπ/2)1(1)n)f(x)=π4+n=12n2π(2cos(nπ/2)1(1)n)cos(nx)


解答:A=[41396]det(AλI)=(λ3)(λ7)=0λ=3,7λ1=3(Aλ1I)v=0[11393][x1x2]=03x1+x2=0v=x2(1/31),we choose v1=(1/31)λ2=7(Aλ2I)v=0[31391][x1x2]=09x1=x2v=x2(1/91),we choose v2=(1/91)Xc(t)=c1e3t(1/31)+c2e7t(1/91)X=[13e3t19e7te3te7t]X1=[94e3t14e3t94e7t34e7t]X1g=[94e3t14e3t94e7t34e7t][3et10et]=[374e2t34e6t]Xp(t)=XX1gdt=[13e3t19e7te3te7t][374e2t34e6t]dt=[13e3t19e7te3te7t][378e2t18e6t]=[5536et194et]X(t)=Xc(t)+Xp(t)X(t)=c1e3t(1/31)+c2e7t(1/91)+(55/3619/4)et
解答:{x(t)=6costy(t)=6sint{x(t)=6sinty(t)=6costds=(x(t))2+(y(t))2dt=6dtC(x2y2)ds=2π0(36cos2t36sin2t)6dt=2162π0cos(2t)dt=216[12sin2t]|2π0=0

解答:AA=I[43x4][43x4]=[163x00163x]=[1001]163x=1x=5

========================== END =========================

解題僅供參考,碩士班歷年試題及詳解

沒有留言:

張貼留言