Loading [MathJax]/jax/output/CommonHTML/jax.js

2024年12月20日 星期五

112年北科大電機碩士班-線性代數詳解(未)

 國立臺北科技大學112學年度碩士班招生考試

系所組別:電機工程系碩士班丁組
科目:線性代數

解答:(1) {A=[122313]b=[412]{ATA=[6111122]ATb=[411][ATAATb]=[6114112211]rref([ATAATb])=[103012]an LS solution: ˆx=[32](2) Since Ax=b has no solution, we need a "best" solution ˆx such that dist(b,Aˆx)dist(b,Ax)
解答:Let yi=(xixj), then yi is a non-zero N×1 vector.We have {||H(yi)||22=(Hyi)H(Hyi)=(yHiHH)(Hyi)||yi||22=yHiyi. Thenλ2maxxHxxHHHHxλ2minxHxyHiHHHyiλ2minyHiyi||H(yi)||22λ2min||yi||22min||H(yi)||22λ2minmin||yi||22minxixj||H(xixj)||22λ2minminxixj||(xixj)||22QED.
解答:(1) A:N x N matrix of the orthonormal eigenvectors of HHTB:diagonal matrix with r elements equal to the root of the positive eigenvalues of AAC:transpose of an N x N matrix containing the orthonormal eigenvectors of AAT(2) If  singular values are repeated, there will be more than one SVD. In this case, SVD is not unique. 
解答:
解答:(1) Null(A):{xAx=0,xRn}(2) A0=00Null(A)Suppose u,vNull(A), then A(u+v)=A(u)+A(v)=0+0=0u+vNull(A)Suppose uNull(A),A(cu)=cA(u)=c0=0cuNull(A),c is a scalarTherefore, Null(A) is a subspace(3) rank(A)+nullity(A)=N(4) A is not of full-rank rank(A)<Ndim(Col(A))<N the columns of A are linearly dependent.

========================== END =========================

解題僅供參考,碩士班歷年試題及詳解

沒有留言:

張貼留言