國立臺灣科技大學110學年度碩士班招生考試
系所組別:機械工程碩士班甲組、乙組、丙組、丁組
科目名稱:工程數學
解答:(a) xy″−y′=2x2⇒1xy″−1x2=2⇒(1xy′)′=2⇒1xy′=2x+c1⇒y′=2x2+c1x⇒y=23x3+12c1x2+c2⇒{y(0)=c2=0y(1)=23+12c1+c2=1⇒{c1=23c2=0⇒y=23x3+13x2(b) y″+5y′+6y=0⇒λ2+5λ+6=0⇒λ=−2,−3⇒yh=c1e−2x+c2e−3xyp=Axe−2x⇒y′p=Ae−2x−2Axe−2x⇒y″p=−4Ae−2x+4Axe−2x⇒y″p+5y′p+6yp=Ae−2x=e−2x⇒A=1⇒yp=xe−2x⇒y=yh+yp=c1e−2x+c2e−3x+xe−2x⇒{y(0)=c1+c2=0y(1)=c1e−2+c2e−3+e−2=e−3⇒{c1=−1c2=1⇒y=−e−2x+e−3x+xe−2x
解答:f(x)=∫x0e−τcosτdτ=[12e−τ(sinτ−cosτ)]|x0=12e−x(sinx−cosx)+12⇒L{f(x)}=12L{e−x(sinx−cosx)}+12L{1}=12(1(s+1)2+1−s+1(s+1)2+1)+12s⇒L{f(x)}=12(1s−s(s+1)2+1)
解答:f(t)+2∫t0f(τ)cos(t−τ)dτ=4e−t+sint⇒L{f(t)}+2L{f(t)}L{cost}=4L{e−t}+L{sint}⇒L{f(t)}+L{f(t)}2ss2+1=4s+1+1s2+1⇒L{f(t)}=4(s2+1)(s+1)3+1(s+1)2⇒f(t)=L−1{4(s2+1)(s+1)3+1(s+1)2}=L−1{4s+1−7(s+1)2+8(s+1)3}⇒f(t)=4e−t−7te−t+4t2e−t
解答:A=[0−213]⇒det
解答:u(x,t)= v(x,t)=ax+b, \text{where }a\text{ and }b\text{ are constant} \Rightarrow \cases{u(-1,t) =v(-1,t)-a+b=2\\ u(1,t)=v(1,t)+a+b=4} \\ \Rightarrow \cases{v(-1,t)=0\\ v(1,t) =0\\ a=1\\ b=3} \Rightarrow u(x,t)=v(x,t)+x+3 \Rightarrow \cases{\frac{\partial v(x,t)}{\partial t} = \frac{\partial^2 v(x,t)}{\partial x^2}\\v(-1,t)=0\\ v(1,t) =0\\ v(x,0)= \sin(2\pi x)} \\\text{Suppose }v(x,t)=X(x+1)T(t), \text{ then we have } \cases{v(-1,t)= X(0)T(t)=0\\ v(1,t)=X(2)T(t)=0} \ \Rightarrow \cases{X(0)=0\\ X(2)=0} \\ \qquad \text{ and }{X''(x+1) \over X(x+1)}={T'(t) \over T(t)} =\lambda \\\textbf{Case I }\lambda=0 \Rightarrow X''(x+1)=0 \Rightarrow X(x+1) =c_1x+c_2 \Rightarrow X(x)=c_1(x-1)+c_2 =c_1x+c_3\\ \qquad \Rightarrow \cases{X(0)=c_3=0\\ X(2) =2c_1+c_3=0} \Rightarrow \cases{c_1=0\\ c_3=0} \Rightarrow X=0 \Rightarrow X(x+1)=0 \Rightarrow v=0 \\ \textbf{Case II }\lambda \gt 0 \Rightarrow \lambda=\rho^2 \Rightarrow X^2(x+1)- \rho^2 X(x+1)=0 \Rightarrow X(x+1)= c_1e^{\rho x} +c_2 e^{-\rho x} \\ \qquad \Rightarrow X(x)=c_1e^{\rho(x-1)} +c_2e^{-\rho(x-1)} =c_3e^{\rho x}+ c_4 e^{-\rho x} \Rightarrow \cases{X(0)=c_3+c_4=0\\ X(2)= c_3e^{2\rho} +c_4e^{-2\rho } =0} \\\qquad \Rightarrow c_3e^{2\rho}-c_3e^{-2\rho}=0 \Rightarrow c_3(e^{4\rho}-1)=0 \Rightarrow c_3=0 \Rightarrow c_4=0 \Rightarrow X=0 \Rightarrow v=0 \\\\ \textbf{Case III }\lambda \lt 0 \Rightarrow \lambda=-\rho^2 \Rightarrow X^2(x+1)+ \rho^2 X(x+1)=0 \Rightarrow X(x+1)= c_1\cos(\rho x) +c_2 \sin(\rho x) \\ \qquad \Rightarrow X(x)=c_1 \cos(\rho(x-1))+ c_2\sin(\rho(x-1)) = c_3\cos(\rho x)+ c_4\sin(\rho x) \\\qquad \Rightarrow \cases{X(0)=c_3=0\\ X(2)=c_3\cos(2\rho) +c_4\sin(2\rho)=0} \Rightarrow \sin(2\rho)=0 \Rightarrow 2\rho =n\pi \Rightarrow \rho ={n\pi \over 2}\\ \qquad \Rightarrow X_n(x) = B_n \sin{n\pi x\over 2},n\in \mathbb N \Rightarrow T'+ \rho^2 T=0 \Rightarrow T=c_5e^{-\rho^2 t} \Rightarrow T_n(t)= A_ne^{-n^2\pi^2 t/4} \\ \Rightarrow v(x,t)=X(x+1)T(t) =\sum_{n=1}^\infty C_n \sin{n\pi(x+1)\over 2} e^{-n^2\pi^2 t/4} \Rightarrow v(x,0)= \sum_{n=1}^\infty C_n \sin{n\pi(x+1)\over 2} =\sin(2\pi x) \\ \Rightarrow \cases{C_4=1\\ C_n=0,n\ne 4} \Rightarrow v(x,t)= \sin (2\pi(x+1)) e^{-4\pi^2 t} =\sin(2\pi x)e^{-4\pi^2 t} \\ \Rightarrow u(x,t)=v(x,t)+x+3 \Rightarrow \bbox[red, 2pt]{u(x,t)= \sin(2\pi x)e^{-4\pi^2 t} +x+3}
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
沒有留言:
張貼留言