新北市立國民中學 113 學年度教師聯合甄選特殊教育資優(數學)科
解答:$$8=8, 7+1, 6+2, 6+1+1, 5+1+1+1, 5+1+2,5+3,\\4+1+1+1+1, 4+2+2, 4+1+3,4+4, \\3+3+2, 3+3+1+1, 3+2+2+1,3+2+1+1+1,3+1+1+1+1+1,\\ 2+2+2+2, 2+2+2+1+1,2+2+1+1+1+1, 2+1+1+1+1+1+1,\\ 1+1+1+1+1+1+1+1 \Rightarrow 合計:1+1+2+3+5+5+4+1=22,故選\bbox[red, 2pt]{(C)}$$
解答:$$a_{n+2} ={a_{n+1}+a_n \over 2} \Rightarrow a_{10}= {1\over 2}(a_9+a_8)= {1\over 2}({1\over 2}(a_8 +a_7)+{1\over 2}(a_7+a_6)) ={1\over 4}(a_8+2a_7+a_6) \\={1\over 4}({1\over 2}(a_7+a_6)+2a_7+a_6) ={1\over 4}({5\over 2}a_7+{3\over 2}a_6) ={5\over 8}a_7+(1-{5\over 8})a_6 \Rightarrow t={5\over 8},故選\bbox[red, 2pt]{(D)}$$
解答:$$1- \left( {1\over 4}+{1\over 6} \right) =1-{5\over 12} ={7\over 12},故選\bbox[red, 2pt]{(C)}$$
解答:
$$\angle BFH=\angle HDB=90^\circ \Rightarrow BDHF共圓,同理AFHE共圓且CDHE也共圓 \\ \cases{對同弧\stackrel{\Large \frown}{FH} 的\angle FBH=\angle FDH \\對同弧\stackrel{\Large \frown}{EH} 的\angle ECH=\angle EDH \\ 對頂角\angle BHF=\angle CHE} \Rightarrow \angle FBH=\angle ECH \Rightarrow \angle FDH =\angle EDH \\\Rightarrow \overline{DH}是\angle EDF的角平分線, 同理\cases{\overline{HF}是\angle DFE的角平分線\\ \overline{HE}是\angle DEF的角平分線} \Rightarrow H是\triangle DEF的內心,故選\bbox[red, 2pt]{(A)}$$
解答:
$$x^2+y^2=9 \Rightarrow \cases{圓心O(0,0)\\ 半徑r=3} \Rightarrow P(4,3)在圓外 \\ \Rightarrow \sqrt{(x-4)^2+(y-3)^2} =\overline{PQ} ,Q在圓上 \Rightarrow \overline{PQ}最大值=\overline{PO}+r =5+3=8,故選\bbox[red, 2pt]{(D)}$$
解答:$$\begin{bmatrix}4/5& 3/5\\ 3/5& -4/5 \end{bmatrix} = \begin{bmatrix} \cos 2\theta & \sin 2\theta\\ \sin 2\theta& -\cos 2\theta \end{bmatrix} 為鏡射矩陣,故選\bbox[red, 2pt]{(A)}$$
解答:$$1到21任取兩個整數有C^{21}_2= 210種數對,而三元素的子集合任取2個有C^3_2=3個數對\\ \Rightarrow {210\over 3}=70,故選\bbox[red, 2pt]{(C)}$$
解答:$$從 n 個排成一圈的物品中選出 k個,且任兩個不相鄰的組合數公式為:{n\over n-k}C^{n-k}_k\\ 將n=10,k=3代入公式\Rightarrow {10\over 10-3} C^{10-3}_3 ={10\over 7}C^{7}_3 =50,故選\bbox[red, 2pt]{(C)}$$
解答:$$將1-18的數依「除以3的餘數」分類:\cases{餘數為0:S_0= \{3,6,9,12,15,18\} \\餘數為1:S_1= \{1,4,7,10 ,13,16\} \\ 餘數為2:S_2=\{2,5,8, 11, 14,17\}} \\ a+b+c是3的倍數有兩種情況:\\ \textbf{Case I }\cases{a,b,c\in S_0 有C^6_3=20種 \\ a,b,c\in S_1有C^6_3=20種 \\ a,b,c\in S_2有C^6_3=20種} \Rightarrow 共有60種\\ \textbf{Case II }S_0,S_1,S_2各取1數, 有6\times 6\times 6=216種\\ 兩種情況合計60+216=276種,故選\bbox[red, 2pt]{(D)},但公布的答案是\bbox[cyan, 2pt]{(C)}$$
解答:$$(a_{n+1}-2a_n)(a_{n+1} -3a_n)=0 \Rightarrow a_k=2^x\times 3^y , 其中x+y=k-1\\ 108=2^2\times 3^3 \Rightarrow 若a_k是108的倍數 \Rightarrow \cases{x\ge 2\\ y\ge 3} \Rightarrow 最小的k-1=2+3=5 \Rightarrow k=6,故選\bbox[red, 2pt]{(C)}$$
解答:$$假設矩形\cases{長=a\\ 寬=b} \Rightarrow a^2+b^2=377, 由於a,b均為整數,窮舉測試可得兩組答案\\ 即\cases{(a,b)=(4,19) \Rightarrow 周長=2\times(4+19) =46\\ (a,b) =(11,16) \Rightarrow 周長=2\times(11+16)=54} \Rightarrow 最大值54,故選\bbox[red, 2pt]{(D)}$$
解答:
$$J=\angle A的內角平分線\cap\angle B的外角平分線 \cap\angle C的外角平分線 \\ 假設\cases{\angle ABC=\alpha\\ \angle ACB=\beta} \Rightarrow \triangle BJC三內角和= (90^\circ-{\alpha\over 2})+ \angle BJC +(90^\circ-{\beta\over 2}) =180^\circ \\ \Rightarrow \angle BJC={1\over 2}(\alpha+\beta) ={1\over 2}(180^\circ-\angle A) ={1\over 2}(180^\circ-30^\circ) =75^\circ,故選\bbox[red, 2pt]{(C)}$$
解答:$$x^3+x-1=0的三根為\alpha, \beta,\gamma \Rightarrow \cases{\alpha+\beta+ \gamma=0\\ \alpha\beta+ \beta\gamma+ \gamma\alpha=1\\ \alpha\beta\gamma =1} \\ \Rightarrow {\alpha+1\over \alpha} + {\beta +1\over \beta} + {\gamma+1\over \gamma} = 1+{1\over \alpha}+1+{1\over \beta}+ 1+ {1\over \gamma} =3+ {\alpha\beta+ \beta\gamma+ \gamma\alpha\over \alpha \beta\gamma} =3+1=4\\,故選\bbox[red, 2pt]{(D)}$$
解答:$${18\over N-6} +{48\over N-6} +{60\over N-6} = {126\over N-6} \\ 126=2\times 3^2\times 7 \Rightarrow 126的正因數有(1+1)(2+1)(1+1)= 12,負因數也有12個\\ 但N\in\mathbb N \Rightarrow N-6\ge -5 \Rightarrow N-6 =-1,-2,-3 \Rightarrow 負因數只有3個\\ 因此N共有12+3=15個,故選\bbox[red, 2pt]{(B)}$$
解答:$$正常骰子點數和=1+2+\cdots +6=21 \Rightarrow 兩顆正常骰子點數和=21\times 2=42 \\ 兩顆特製骰子點數和=(1+2+2+3+3+ 4)+ (1+3+8+x+y+z)=27+x+y+z = 42\\ \Rightarrow x+y+z=15,故選\bbox[red, 2pt]{(D)}$$
解答:
$$假設正方形四個頂點\cases{O(0,0) \\A(1,0) \\B(1,-1)\\ C(0,-1)} \Rightarrow \cases{小圓圓心P(a,-a),圓半徑a,a\gt 0\\ 半圓圓心Q(1/2,-1) }\\ \Rightarrow \overline{PQ}=a+{1\over 2} \Rightarrow \left( a-{1\over 2} \right)^2+(-a+1)^2= \left( a +{1\over 2}\right)^2 \Rightarrow a^2-4a+1=0 \\ \Rightarrow a=2-\sqrt 3\; (2+\sqrt 3\gt 1超過正方形),故選\bbox[red, 2pt]{(B)}$$
解答:$$\boxed{abcd} \times 9仍為四位數\Rightarrow a=1 \Rightarrow \boxed{1bcd} \times 9= \boxed{dcb1} \Rightarrow d=9 \\ \Rightarrow \boxed{1bc9} \times 9= \boxed{9cb1} \Rightarrow (1000+100b+10c+9)\times 9= 9000+100c+10b+1 \\ \Rightarrow 89b+8=c \Rightarrow \cases{b=0\\ c=8} \Rightarrow \boxed{abcd}=1089,故選\bbox[red, 2pt]{(A)}$$
解答:
$$直角\triangle ABC,如上圖, 可知: \overline{AC}^2= \overline{AB}^2+ \overline{BC}^2 \Rightarrow 大正方形面積=兩個小正方形面積的和\\ 所有正方形的和=A+B+C+ D+E+F+G+H+I+(J+K)+ (L+M)+(N+P)+(Q+R) \\=A+B+C+ D+E+F+G+H+ I+I+H+F+G \\= A+B+C+ D+E+(2F+2G)+(2H+ 2I) = A+B+C+ D+E+2D+2E \\= A+(B+C)+(3D+3E) =A+A+3A=5A= 1445 \Rightarrow A=289 \Rightarrow 邊長=\sqrt{289}=17\\,故選\bbox[red, 2pt]{(B)}$$

解答:$$N= 1^9\times 2^8\times 3^7\times 4^6\times 5^5\times 6^4 \times 7^3\times 8^2\times 9^1 =2^{30} \times 3^{13}\times 5^5\times 7^3 \\ 假設N的因數n=2^a\times 3^b\times 5^c\times 7^d為完全立方數\Rightarrow \cases{a是3的倍數\Rightarrow a有 \lfloor 30/3\rfloor+1=11個\\ b是3的倍數 \Rightarrow b有\lfloor 13/3\rfloor+1= 5個 \\ c是3的倍數 \Rightarrow c有\lfloor 5/3\rfloor+1= 2個 \\ d是3的倍數 \Rightarrow d有\lfloor 3/3\rfloor+1= 2個} \\ \Rightarrow d的可能有11\times 5\times 2\times 2=220個,故選\bbox[red, 2pt]{(D)}$$
解答:$$將圖(b)摺回立方體可知:灰色面與E相鄰且與對面的C, 字母垂直,故選\bbox[red, 2pt]{(C)}$$
解答:$$令g(n)=f_n\times f_{n+3}-f_{n+1}\times f_{n+2},欲求g(2022) ,將費氏數列的特性:f_{k-1}f_{k+1}-f_k^2=(-1)^k代入\\ \Rightarrow g(n)=f_n(f_{n+1}+f_{n+2})-f_{n+1}\times f_{n+2} = f_nf_{n+1}+ (f_n-f_{n+1})f_{n+2} \\= f_nf_{n+1}+ (f_n-f_{n+1})(f_{n+1}+f_n) = f_nf_{n+1}+f_{n}^2-f_{n+1}^2=f_{n+1} (f_n-f_{n+1})+f_n^2 \\= f_{n+1} (-f_{n-1})+f_n^2 =-(f_{n-1}f_{n+1}-f_n^2)=-(-1)^n =(-1)^{n+1} \Rightarrow g(2022)=-1,故選\bbox[red, 2pt]{(A)}$$
解答:$$16a^2=9b^2+31 \Rightarrow 16a^2-9b^2=(4a+3b)(4a-3b)=31\\ \textbf{Case I }\cases{4a+3b=1\\ 4a-3b=31} \Rightarrow \cases{a=4\\b=-5} \Rightarrow a+b=-1 \\\textbf{Case II }\cases{4a+3b=31\\ 4a-3b=1} \Rightarrow \cases{a=4\\b=5 \not \lt 0} \\ \textbf{Case III }\cases{4a+3b= -1\\ 4a-3b=-31} \Rightarrow \cases{a=-4\\b=5 \not \lt 0} \\ \textbf{Case IV }\cases{4a+3b= -31\\ 4a-3b=-1} \Rightarrow \cases{a=-4\\b=-5 }\Rightarrow a+b=-9 \\ \Rightarrow a+b最小值=-9,故選\bbox[red, 2pt]{(D)}$$
解答:$$假設一開始\cases{唐一藏有a元\\ 唐二藏有b元\\ 唐三藏有c元} \xrightarrow{唐一藏贏}\cases{唐一藏有3a元\\ 唐二藏有b-a元\\ 唐三藏有c-a元} \xrightarrow{唐二藏贏}\cases{唐一藏有4a-b元\\ 唐二藏有3(b-a)元\\ 唐三藏有c-b元} \\ \xrightarrow{唐三藏贏}\cases{唐一藏有4a-c元\\ 唐二藏有4b-3a-c元\\ 唐三藏有3(c-b)元} \Rightarrow \cases{4a-c=0\\ 4b-3a-c=0\\ 3(c-b)=729} \Rightarrow \cases{a=108\\ c=432},故選\bbox[red, 2pt]{(D)}$$
解答:
$$假設\cases{正方形DEFG邊長=a\\ h=d(A,\overline{DG})} \Rightarrow \cases{\triangle ADG=2=a\cdot h/2 \Rightarrow h=4/a\\ \triangle BED=3=a\cdot \overline{BE}/2 \Rightarrow \overline{BE} =6/a\\ \triangle CGF =5 =a\cdot \overline{CF}/2 \Rightarrow \overline{CF}=10/a} \\ \Rightarrow \cases{\triangle ABC= \triangle ADG +\triangle BED+ \triangle CGF+ \square EDFG =2+3+5+a^2= 10+a^2 \\ \triangle ABC= \overline{BC}\cdot d(A,\overline{BC})/2 =(a+16/a) (a+4/a)/2 =(a^2+20+64/a^2)/2} \\ \Rightarrow 10+a^2={1\over 2} \left( a^2+20+{64\over a^2} \right) \Rightarrow a^4=64 \Rightarrow \square DEFG面積=a^2=8,故選\bbox[red, 2pt]{(B)}$$
解答:$$假設\cases{正方形邊長為1\\ O為原點} \Rightarrow \cases{\overline{AB} =5\\ \overline{OA}=\sqrt{1^2+3^2} =\sqrt{10} \\ \overline{OB}= \sqrt{1^2+2^2} = \sqrt{5}} \Rightarrow \cos \angle AOB={5+10-5^2\over 2\sqrt{50}} =-{1\over \sqrt 2} \\ \Rightarrow \angle AOB=135^\circ,故選\bbox[red, 2pt]{(C)}$$
解題僅供參考,其他教甄試題及詳解

































沒有留言:
張貼留言