Loading [MathJax]/jax/output/CommonHTML/jax.js

2018年10月28日 星期日

105年地方特考--工程數學詳解


105年特種考試地方政府公務人員考試

等    別:三等考試
類科別:電力工程
科        目:工程數學
甲、申論題部份:(50分)


(一){a=P1P2=(1,2,3)b=P1P3=(2,1,2)=12|a|2|b|2(ab)2=12(12+22+32)(22+12+22)(226)2=1214×936=3210(二){¯OP1=(1,1,1)¯OP2=(2,3,4)¯OP3=(3,0,1)=111234301=|3+129+2|=2




(一)F=(y+yz)i+(x+3z3+xz)j+(9yz2+xy1)kcurlF=|ijkxyzy+yzx+3z3+xz9yz2+xy1|=(9z2+x)i+(1+z)k+(y)j(1+z)k(y)j(9z2+x)i=0(二)f(x,y,z)=C(y+yz)dx+(x+3z3+xz)dy+(9yz2+xy1)dz{fx=y+yzfy=x+3z3+xzfz=9yz2+xy1{f=xy+xyz+p(y,z)f=xy+3yz3+xyz+q(x,z)f=3yz3+xyzz+r(x,y)f(x,y,z)=xy+3yz3+xyzz+c(三)C(y+yz)dx+(x+3z3+xz)dy+(9yz2+xy1)dz=[xy+3yz3+xyzz]|(2,1,4)(1,1,1)=(2+192+84)(1+3+11)=1984=194



(一)f(z)=1(z1)2(z3)=1(z1)2(z12)=1(2)(z1)2(1z12)=1(2)(z1)2n=0(z12)n=12n=0(z1)n22n(二)f(z)=1(z1)2(z3)=1(z3+2)2(z3)=14(z3)(1+z32)2=14(z3)(1+z32)2=14(z3)n=0C2n(z32)n=14n=012nC2n(z3)n1



(一)|4λ1115λ1013λ|=0(λ+3)(λ+4)(5λ)+1+λ+34λ=0(λ+3)(λ+4)(5λ)=0λ=4,3,5λ=4[011191011][xyz]=0[xyz]=[1011]λ=3[111181010][xyz]=0[xyz]=[101]λ=5[911101018][xyz]=0[xyz]=[181]A4,3,5[1011],[101],[181](二)[x(t)y(t)z(t)]=C1[1011]e4t+C2[101]e3t+C3[181]e5t,C1,C2,C3




(一)μ=E(K)=nk=0kn!(nk)!k!pk(1p)nk=nk=1kn!(nk)!k!pk(1p)nk=nk=1n!(nk)!(k1)!pk(1p)nk=npnk=1(n1)!(nk)!(k1)!pk1(1p)nk=np(p+1p)n1=npσ2=Var(K)=E(K2)(E(K))2=E(K2)(np)2=E(K2)n2p2=nk=0k2n!(nk)!k!pk(1p)nkn2p2=nk=0(k(k1)+k)n!(nk)!k!pk(1p)nkn2p2=nk=0k(k1)n!(nk)!k!pk(1p)nk+nk=0kn!(nk)!k!pk(1p)nkn2p2=nk=0k(k1)n!(nk)!k!pk(1p)nk+npn2p2=n(n1)p2nk=2(n2)!(nk)!(k2)!pk2(1p)nk+npn2p2=n(n1)p2(p+1p)n2+npn2p2=n(n1)p2+npn2p2=npnp2=np(1p)(二)μ=E(K)=k=0keλλkk!=λk=1eλλk1(k1)!=λσ2=Var(K)=E(K2)(E(K))2=E(K2)λ2=k=0k2eλλkk!λ2=k=0(k(k1)+k)eλλkk!λ2=k=0k(k1)eλλkk!+k=0keλλkk!λ2=λ2k=2eλλk2(k2)!+λλ2=λ2+λλ2=λ

乙、測驗題部分:(50分)

[124213411](2)r1+r2,(4)r1+r3[1240350915](3)r2+r3[124035000](3)(2r1+r2)+(4)r1+r3=02r13r2+r3=02(1,2,4)3(2,1,3)+(4,1,1)=0(C)


A=[100121],b=[123]A(ATA)1ATb=[100121]([102011][100121])1[102011][123]=[100121]([5222])1[75]=16[100121][2225][75]=16[100121][411]=16[41119](B)


|A1B2AB02IA200ATB|=det(A1(2I)ATB)=det(A1)det(2I)det(AT)det(B)=86det(A1)det(AT)=48det(A1)det(A)=48det(A1A)=48det(I)=48(B)


A=[cosxsinxcos2xsinxcosxsinx0sin2xcosxsinxcosx]AAT=[cosxsinxcos2xsinxcosxsinx0sin2xcosxsinxcosx][cosxsinxcosxsin2xcos2xsinxcosxsinxsinx0cosx]=[cos2xsin2x+cos4x+sin2xcos2xsinx+cos2xsinxcosxsin3xcos3xsinx+cosxsinxcos2xsinx+cos2xsinxcos2x+sin2xcosxsin2xcosxsin2xcosxsin3xcos3xsinx+cosxsinxcosxsin2xcosxsin2xsin4x+cos2xsin2x+cos2x]=[cos2x(sin2x+cos2x)+sin2x0cosxsinx(sin2x+cos2x)+cosxsinx010cosxsinx(sin2x+cos2x)+cosxsinx0sin2x(sin2x+cos2x)+cos2x]=[cos2x+sin2x0cosxsinx+cosxsinx010cosxsinx+cosxsinx0sin2x+cos2x]=[100010001]=I(A)


A=[3710132612145911154122428](1/2)r2[37101313675911154122428](3)r2+r1,(5)r3+r1,(4)r2+r4,[028813670619200000](A)


f(x1,x2,x3)=x21+3x22+6x232x1x2+2ax1x3=[x1x2x3][11a130a06][x1x2x3]=XTAXf(x1,x2,x3)>0XTAX>0AA|1λ1a13λ0a06λ|=0λ310λ2+(26a2)λ+3a212=0g(λ)=λ310λ2+(26a2)λ+3a212g(0)<03a212<02<a<2(B)


ez=1i=2(1212i)=2(cos(π4)+isin(π4))=eln2ei(π4)=eln2+i(π4)=e12ln2+i(π4)z=12ln2+i(π4)(D)



z=0simple poleCe1/z=2πi×f(0)=2πi×1=2πi(B)


i/2ieπzdz=[1πeπz]|i/2i=1π(eiπ/2eπi)=1π(i+1)(D)


L{cos(4t)}=ss2+42{e3tcos(4t)}=s+3(s+3)2+42{2e3tcos(4t)}=2(s+3)(s+3)2+42(C)


y=2y+2xy2y=2x{yh=Ce2xyp=Ax+Byp2yp=A2(Ax+B)=2Ax+(A2B)=2x{2A=2A2B=0{A=1B=1/2y=yh+yp=Ce2xx12(D)



{x+2yy=0x+y=et(ety)+2yy=0yy=12et{yh=Cetyp=Aetypyp=AetAet=2Aet=12etA=14yp=14ety=yh+yp=Cet+14et,y(0)=0C+14=0C=14y=14et+14etx=ety=14et+34etx=14et34et+Bx(0)=01434+B=0B=12x=14et34et+12(D)


2s1s2+8s+25=2(s+4)9(s+4)2+32=2(s+4)(s+4)2+323×3(s+4)2+32L1{2s1s2+8s+25}=2L1{s+4(s+4)2+32}3L1{3(s+4)2+32}=2e4tcos(3t)3e4tsin(3t)(C)



x2y+xy=y3/2x2y+xy+y3/2=0x2y3/2y+xy5/2+1=0x5/2y3/2y+x3/2y5/2+x1/2=025(x5/2y5/2)+x1/2=025x5/2y5/2+23x3/2=Cx5/2y5/2+53x3/2=C(D)


P=ux,uxy2ux=0yP2P=0dp=2pdy1pdp=2dylnp=2y+A(x)p=e2yf(x)u=e2yf(x)dx+k1(y)(B)


p=ux,uxy+2ux=xdpdy+2p=xp=e2yf(x)ux(x,0)=x2p(x,0)=x2f(x)=x2p=e2yx2u(x,y)=pdx+g(y)=e2yx2dx+g(y)=e2y(13x3+C)+g(y)u(0,y)=0Ce2y+g(y)=0g(y)=Ce2yu(x,y)=13x3e2yu(1,0)=13,(B)


d2ydt2+4dydt+4y=2t2L{d2ydt2}+4L{dydt}+4L{y}=2L{t2}s2Y(s)sy(0)y(0)+4(sY(s)y(0))+4Y(s)=22s3s2Y(s)+4sY(s)+4Y(s)=4s3Y(s)(s+2)2=4s3Y(s)=4(s+2)2s3=as3+bs2+cs+d(s+2)2+es+2a(s+2)2+bs(s+2)2+cs2(s+2)2+ds3+es3(s+2)=4(c+e)s3+(b+4c+d+2e)s3+(a+4b+4c)s2+(4a+4b)s+4a=4{c+e=0b+4c+d+2e=0a+4b+4c=04a+4b=04a=4{a=1b=1c=3/4d=1/2e=3/4a+d=112=12(D)


Var[kX]=k2Var[X](B)



P(X2Y)=OBCOAC=¯BC¯AC=0.5(B)


E(X)=0×0.1+1×(0.1+0.1)+2×(0.2+0.5)=1.6E(Y)=0×0.1+1×(0.1+0.2)+2×(0.1+0.5)=1.5E(XY)=0.1+2×0.2+2×0.1+2×2×0.5=2.7Cov(X,Y)=E(XY)E(X)E(Y)=2.71.6×1.5=0.3(B)


考選部未公布申論題答案,解題僅供參考

沒有留言:

張貼留言