105年特種考試地方政府公務人員考試
等 別:三等考試
類科別:電力工程
科 目:工程數學
等 別:三等考試
類科別:電力工程
科 目:工程數學
甲、申論題部份:(50分)
解:
(一)→F=(y+yz)→i+(x+3z3+xz)→j+(9yz2+xy−1)→k⇒curl→F=|→i→j→k∂∂x∂∂y∂∂zy+yzx+3z3+xz9yz2+xy−1|=(9z2+x)→i+(1+z)→k+(y)→j−(1+z)→k−(y)→j−(9z2+x)→i=0因此積分與路徑無關(二)f(x,y,z)=∫C(y+yz)dx+(x+3z3+xz)dy+(9yz2+xy−1)dz⇒{fx=y+yzfy=x+3z3+xzfz=9yz2+xy−1⇒{f=xy+xyz+p(y,z)f=xy+3yz3+xyz+q(x,z)f=3yz3+xyz−z+r(x,y)⇒f(x,y,z)=xy+3yz3+xyz−z+c(三)∫C(y+yz)dx+(x+3z3+xz)dy+(9yz2+xy−1)dz=[xy+3yz3+xyz−z]|(2,1,4)(1,1,1)=(2+192+8−4)−(1+3+1−1)=198−4=194
解:
(一)f(z)=1(z−1)2(z−3)=1(z−1)2(z−1−2)=1(−2)(z−1)2(1−z−12)=1(−2)(z−1)2∞∑n=0(z−12)n=−12∞∑n=0(z−1)n−22n(二)f(z)=1(z−1)2(z−3)=1(z−3+2)2(z−3)=14(z−3)(1+z−32)2=14(z−3)(1+z−32)−2=14(z−3)∞∑n=0C−2n(z−32)n=14∞∑n=012nC−2n(z−3)n−1
解:
(一)|−4−λ1115−λ−101−3−λ|=0⇒(λ+3)(λ+4)(5−λ)+1+λ+3−4−λ=0⇒(λ+3)(λ+4)(5−λ)=0⇒λ=−4,−3,5λ=−4⇒[01119−1011][xyz]=0⇒取[xyz]=[10−11]λ=−3⇒[−11118−1010][xyz]=0⇒取[xyz]=[101]λ=5⇒[−91110−101−8][xyz]=0⇒取[xyz]=[181]因此A的特徵值為−4,−3,5,對應的特徵向量為[10−11],[101],[181](二)[x(t)y(t)z(t)]=C1[10−11]e−4t+C2[101]e−3t+C3[181]e5t,其中C1,C2,C3為常數
解:
(一)μ=E(K)=n∑k=0kn!(n−k)!k!pk(1−p)n−k=n∑k=1kn!(n−k)!k!pk(1−p)n−k=n∑k=1n!(n−k)!(k−1)!pk(1−p)n−k=npn∑k=1(n−1)!(n−k)!(k−1)!pk−1(1−p)n−k=np(p+1−p)n−1=npσ2=Var(K)=E(K2)−(E(K))2=E(K2)−(np)2=E(K2)−n2p2=n∑k=0k2n!(n−k)!k!pk(1−p)n−k−n2p2=n∑k=0(k(k−1)+k)n!(n−k)!k!pk(1−p)n−k−n2p2=n∑k=0k(k−1)n!(n−k)!k!pk(1−p)n−k+n∑k=0kn!(n−k)!k!pk(1−p)n−k−n2p2=n∑k=0k(k−1)n!(n−k)!k!pk(1−p)n−k+np−n2p2=n(n−1)p2n∑k=2(n−2)!(n−k)!(k−2)!pk−2(1−p)n−k+np−n2p2=n(n−1)p2(p+1−p)n−2+np−n2p2=n(n−1)p2+np−n2p2=np−np2=np(1−p)(二)μ=E(K)=∞∑k=0ke−λλkk!=λ∞∑k=1e−λλk−1(k−1)!=λσ2=Var(K)=E(K2)−(E(K))2=E(K2)−λ2=∞∑k=0k2e−λλkk!−λ2=∞∑k=0(k(k−1)+k)e−λλkk!−λ2=∞∑k=0k(k−1)e−λλkk!+∞∑k=0ke−λλkk!−λ2=λ2∞∑k=2e−λλk−2(k−2)!+λ−λ2=λ2+λ−λ2=λ
解:[1242134−11](−2)r1+r2,(−4)r1+r3→[1240−3−50−9−15](−3)r2+r3→[1240−3−5000]⇒(−3)(−2r1+r2)+(−4)r1+r3=0⇒2r1−3r2+r3=0⇒2(1,2,4)−3(2,1,3)+(4,−1,1)=0,故選(C)
解:A=[10012−1],b=[1−23]⇒A(ATA)−1ATb=[10012−1]([10201−1][10012−1])−1[10201−1][1−23]=[10012−1]([5−2−22])−1[7−5]=16[10012−1][2225][7−5]=16[10012−1][4−11]=16[4−1119],故選(B)
解:|A−1B2AB02IA200ATB|=det(A−1(2I)ATB)=det(A−1)⋅det(2I)⋅det(AT)⋅det(B)=8⋅6⋅det(A−1)⋅det(AT)=48⋅det(A−1)⋅det(A)=48⋅det(A−1A)=48⋅det(I)=48,故選(B)
解:A=[cosxsinxcos2xsinx−cosxsinx0−sin2x−cosxsinxcosx]⇒AAT=[cosxsinxcos2xsinx−cosxsinx0−sin2x−cosxsinxcosx][cosxsinx−cosx−sin2xcos2xsinx−cosxsinxsinx0cosx]=[cos2xsin2x+cos4x+sin2x−cos2xsinx+cos2xsinx−cosxsin3x−cos3xsinx+cosxsinx−cos2xsinx+cos2xsinxcos2x+sin2xcosxsin2x−cosxsin2x−cosxsin3x−cos3xsinx+cosxsinxcosxsin2x−cosxsin2xsin4x+cos2xsin2x+cos2x]=[cos2x(sin2x+cos2x)+sin2x0−cosxsinx(sin2x+cos2x)+cosxsinx010−cosxsinx(sin2x+cos2x)+cosxsinx0sin2x(sin2x+cos2x)+cos2x]=[cos2x+sin2x0−cosxsinx+cosxsinx010−cosxsinx+cosxsinx0sin2x+cos2x]=[100010001]=I,故選(A)
解:A=[3710132612145911154122428](1/2)r2→[37101313675911154122428](−3)r2+r1,(−5)r3+r1,(−4)r2+r4,→[0−2−8−813670−6−19−200000],故選(A)
解:f(x1,x2,x3)=x21+3x22+6x23−2x1x2+2ax1x3=[x1x2x3][1−1a−130a06][x1x2x3]=XTAXf(x1,x2,x3)>0⇒XTAX>0為正定矩陣⇒A之特徵值均為正值求A之特徵值⇒|1−λ−1a−13−λ0a06−λ|=0⇒λ3−10λ2+(26−a2)λ+3a2−12=0令g(λ)=λ3−10λ2+(26−a2)λ+3a2−12⇒g(0)<0⇒3a2−12<0⇒−2<a<2,故選(B)
解:ez=1−i=√2(1√2−1√2i)=√2(cos(−π4)+isin(−π4))=eln√2ei(−π4)=eln√2+i(−π4)=e12ln2+i(−π4)⇒z=12ln2+i(−π4),故選(D)
解:
z=0為simple pole⇒∫Ce1/z=2πi×f(0)=2πi×1=2πi,故選(B)
解:∫i/2ieπzdz=[1πeπz]|i/2i=1π(eiπ/2−eπi)=1π(i+1),故選(D)
解:L{cos(4t)}=ss2+42⇒{e−3tcos(4t)}=s+3(s+3)2+42⇒{2e−3tcos(4t)}=2(s+3)(s+3)2+42,故選(C)
解:y′=2y+2x⇒y′−2y=2x⇒{yh=Ce2xyp=Ax+By′p−2yp=A−2(Ax+B)=−2Ax+(A−2B)=2x⇒{−2A=2A−2B=0⇒{A=−1B=−1/2y=yh+yp=Ce2x−x−12,故選(D)
解:{x′+2y′−y=0x′+y=e−t⇒(e−t−y)+2y′−y=0⇒y′−y=−12e−t⇒{yh=Cetyp=Ae−ty′p−yp=−Ae−t−Ae−t=−2Ae−t=−12e−t⇒A=14⇒yp=14e−ty=yh+yp=Cet+14e−t,由y(0)=0可知C+14=0⇒C=−14⇒y=−14et+14e−t⇒x′=e−t−y=14et+34e−t⇒x=14et−34e−t+B由x(0)=0可知14−34+B=0⇒B=12⇒x=14et−34e−t+12,故選(D)
解:2s−1s2+8s+25=2(s+4)−9(s+4)2+32=2(s+4)(s+4)2+32−3×3(s+4)2+32⇒L−1{2s−1s2+8s+25}=2L−1{s+4(s+4)2+32}−3L−1{3(s+4)2+32}=2e−4tcos(3t)−3e−4tsin(3t),故選(C)
解:x2y′+xy=−y−3/2⇒x2y′+xy+y−3/2=0⇒x2y3/2y′+xy5/2+1=0⇒x5/2y3/2y′+x3/2y5/2+x1/2=0⇒25(x5/2y5/2)′+x1/2=0⇒25x5/2y5/2+23x3/2=C⇒x5/2y5/2+53x3/2=C,故選(D)
解:令P=ux,則uxy−2ux=0≡∂∂yP−2P=0⇒dp=2pdy⇒1pdp=2dy⇒lnp=2y+A(x)⇒p=e2y⋅f(x)⇒u=e2y∫f(x)dx+k1(y),故選(B)
解:令p=ux,則uxy+2ux=x≡dpdy+2p=x⇒p=e−2yf(x)∂u∂x(x,0)=x2⇒p(x,0)=x2⇒f(x)=x2⇒p=e−2yx2⇒u(x,y)=∫pdx+g(y)=e−2y∫x2dx+g(y)=e−2y(13x3+C)+g(y)u(0,y)=0⇒Ce−2y+g(y)=0⇒g(y)=−Ce−2y⇒u(x,y)=13x3e−2y⇒u(1,0)=13,故選(B)
解:d2ydt2+4dydt+4y=2t2⇒L{d2ydt2}+4L{dydt}+4L{y}=2L{t2}⇒s2Y(s)−sy(0)−y′(0)+4(sY(s)−y(0))+4Y(s)=22s3⇒s2Y(s)+4sY(s)+4Y(s)=4s3⇒Y(s)(s+2)2=4s3⇒Y(s)=4(s+2)2s3=as3+bs2+cs+d(s+2)2+es+2⇒a(s+2)2+bs(s+2)2+cs2(s+2)2+ds3+es3(s+2)=4⇒(c+e)s3+(b+4c+d+2e)s3+(a+4b+4c)s2+(4a+4b)s+4a=4⇒{c+e=0b+4c+d+2e=0a+4b+4c=04a+4b=04a=4⇒{a=1b=−1c=3/4d=−1/2e=−3/4⇒a+d=1−12=12,故選(D)
解:Var[kX]=k2Var[X],故選(B)
解:
P(X≤2Y)=△OBC△OAC=¯BC¯AC=0.5,故選(B)
解:E(X)=0×0.1+1×(0.1+0.1)+2×(0.2+0.5)=1.6E(Y)=0×0.1+1×(0.1+0.2)+2×(0.1+0.5)=1.5E(XY)=0.1+2×0.2+2×0.1+2×2×0.5=2.7Cov(X,Y)=E(XY)−E(X)E(Y)=2.7−1.6×1.5=0.3,故選(B)
考選部未公布申論題答案,解題僅供參考
沒有留言:
張貼留言