Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

2019年8月20日 星期二

107年高考三級-工程數學詳解


107年公務人員高等考試三級考試試題

類 科 :電力工程、電子工程、電信工程
科 目:工程數學
last modified: 8/21/2019

ABA=P1BP(一)P1(λI+B)P=P1λIP+P1BP=λP1IP+A=λI+AλI+AλI+B(二)A=P1BPtr(A)=tr(P1BP)=tr((P1B)(P))=tr((P)(P1B))=tr(B)(三)A=P1BPdet(A)=det(P1BP)=det(P1)det(B)det(P)=det(P1)det(P)det(B)=det(B)A,Bdet(A)=det(B)():λI+AλI+Bdet(λI+A)=det(λI+B)


y=m=0amxm=a0+a1x+a2x2+a3x3++anxn+y=a1+2a2x+3a3x2++nanxn1+xy=a1x+2a2x2+3a3x3++nanxn+(x+1)y=a1+(a1+2a2)x+(2a2+3a3)x2++(nan+(n+1)an+1)xn+(x+1)y=y{a0=a1a1=a1+2a2a2=2a2+3a3an=nan+(n+1)an+1{a0=a1an=0,n2y=a0+a0x,a0


f(x)πxπf(x)=a0+n=1ancosnx+n=1bnsinnx{a0=12πππf(x)dx=12πππx22dx=14π[13x3]|ππ=16π2an=1πππf(x)cosnxdx=1πππx22cosnxdx=12π[x2nsinnx+2xn2cosnx2n3sinnx]|ππ=2n2(1)nbn=1πππf(x)sinnxdx=1πππx22sinnxdx=0()f(x)=π26+n=12n2(1)ncosnxf(π)=π26+n=12n2(1)ncosnπ=π26+n=12n2=π26+2(112+122+132+)f(π)=π22=π26+2(112+122+132+)112+122+132+=(π22π26)÷2=π261+14+19+116+=π26

解:Cf(z)dz=C3z3+2(z1)(z2+9)dz{Res(f,z=1)=3z3+2z2+9|z=1=510=12Res(f,z=3i)=3z3+2(z1)(z+3i)|z=3i=281i186iRes(f,z=3i)=3z3+2(z1)(z3i)|z=3i=2+81i18+6iCf(z)dz=2πi×(Res(f,z=1)+Res(f,z=3i)+Res(f,z=3i))=2πi×(12+218i186i+2+18i18+6i)=2πi×(12+900360)=2πi×3=6πi



乙、測驗題部分:(50分)

{A=[1234]B=[1234]{|A+B|=|0000|=0|A|+|B|=|1234|+|1234|=22=4|A+B||A|+|B|(B)


{a=(1,1)0b=(2,2)0a×b=0(D)




[1a1011202][uvw]u=mv+nw,m,n{2n=1m=am+2n=1{n=1/2m=2a=m=2(A)


rank(A)=nnullity(A)=nn=0(D)


L(x,y,z)=(x2y,2x+y)[120210][xyz](D)


[120453372014252461492447]3r1+r2,2r1+r3,4r1+r4[120453012121650121216501212165]r2+r3,r2+r4[12045301212165000000000000]Rank=2(B)


e5+2i=e5e2i=e5(cos2+isin2)(C)


f(z)=sinhzz2Res(f,z=0)=ddzsinhz|z=0=ddzezez2|z=0=ez+ez2|z=0=1+12=1Csinhzz2dz=2πi×Res(f,z=0)=2πi×1=2πi(A)


:L1{F(s)}=f(t)L1{easF(s)}=u(ta)f(ta)L1{e2ss23s+2}=L1{e2s(1s21s1)}=u(t2)(e2(t2)e1(t2))=(et2+e2t4)u(t2)(B)


y(t)t0y(τ)(tτ)dτ=212t2y(0)00y(τ)(tτ)dτ=21202y(0)=2y(t)=a+bet+cety(0)=a+b+c=2(C)


2+(6xe2y)dydx=02dx+(6xe2y)dy=0Mdx+Ndy=0{M=2N=6xe2yf(y)=MyNxM=062=3I=ef(y)dy=e3dy=e3y(C)


{x(t)=2y(t)y(t)=12x(t){x


(x-1)^2y''-4xy'+4y'+4y=0 \Rightarrow (x-1)^2y''-4(x-1)y'+4y=0\\ 令u=x-1,則上式為u^2y''-4uy'+4y=0\\ 令y=u^m \Rightarrow y'=mu^{m-1} \Rightarrow y''=m(m-1)u^{m-2} \Rightarrow m(m-1)u^m-4mu^m+4u^m=0\\ \Rightarrow m(m-1)-4m+4=0 \Rightarrow m^2-5m+4=0 \Rightarrow (m-4)(m-1)=0 \Rightarrow m=4,1\\ \Rightarrow y=c_1u^4+c_2u^1 = c_1(x-1)^4+c_2(x-1),故選\bbox[red,2pt]{(B)}



依定義,故選\bbox[red,2pt]{(B)}


令u_x=P,則u_{xy}=4u_x \Rightarrow {d P\over d y}=4P \Rightarrow {dp\over P}=4dy \Rightarrow \ln{P}=4y+A(x) \Rightarrow P= B(x)e^{4y} \\ \Rightarrow u=\int{P dx} =\int {B(x)e^{4y}\,dx}= e^{4y}\int{B(x)\,dx}=e^{4y}C(x)+D(y),故選\bbox[red,2pt]{(C)}


\begin{cases} L\{\sinh{at}\}={a\over s^2-a^2} \\ L\{\cosh{at}\} ={s\over s^2-a^2} \end{cases} \Rightarrow L^{-1}\{F(s)\} = L^{-1}\{{5s+1\over s^2-25}\} = L^{-1}\{{5s\over s^2-5^2} +{1\over s^2-5^2}\} \\ =5L^{-1}\{{s\over s^2-5^2}\}+ {1\over 5} L^{-1}\{ {5\over s^2-5^2}\} = 5\cosh{5t}+ {1\over 5}\sinh{5t},故選\bbox[red,2pt]{(B)}


選項(A)正確 \Rightarrow 選項(B)錯誤,故選\bbox[red,2pt]{(B)}


不合乎條件的事件A=\{(x,y) \mid x\ne y 且 x\times y 是奇數\}= \{ (1,3), (1,5), (3,1) ,(3,5), (5,1), (5,3)\}\\ \Rightarrow \#(A)=6 \Rightarrow 1-P(A)=1-6/36=30/36=5/6 ,故選\bbox[red,2pt]{(C)}


E[Z]=\sum{zp(z)}=\sum{xyf(x,y)} = 2\cdot 1\cdot f(2,1) + 2\cdot 3\cdot f(2,3) + 2\cdot 5\cdot f(2,5) + 4\cdot 1\cdot f(4,1)\\ \;\;+ 4\cdot 3\cdot f(4,3)+ 4\cdot 5\cdot f(4,5) =0.2+ 1.2+1 +0.6+ 3.6+ 3 =9.6,故選\bbox[red,2pt]{(C)}


E[X]=\sum{xp(x)}=0\times (1/3)+1\times (2/3)= 2/3,故選\bbox[red,2pt]{(C)}


考選部未公布申論題答案,解題僅供參考

4 則留言:

  1. 請問 申論題的第三題 bn=0 不是偶函數嗎?

    回覆刪除
    回覆
    1. 原意是:(x^2/2)sin(nx)是奇函數,所以積分為0;

      刪除
  2. 第9題 最後答案是-e^t-2 打錯了喔!

    回覆刪除