96學年度指定科目考試試題
數學甲
第壹部分:選擇題一、單選題
解:
z=cos2π7+isin2π7⇒|1−z|=|1−cos2π7−isin2π7|=√(1−cos2π7)2+(sin2π7)2=√1−2cos2π7+cos22π7+sin22π7=√2−2cos2π7=√2−2(2cos2π7−1)=√4−4cos2π7=√4(1−cos2π7)=√4sin2π7=2sinπ7,故選(1)
解:
解:(0,0)10次移動→(5+5log2,5+152log2)⇒{5+5log2=loga1+loga3+⋯+loga95+152log2=loga2+loga4+⋯+loga10⇒{5+5log2=log(a1a3⋯a9)=log(a1⋅a1r2⋯a1r8)=log(a51r20)=5loga1+20logr5+152log2=log(a2a4⋯a10)=log(a1r⋅a1r3⋯a1r9)=log(a51r25)=5loga1+25logr⇒{5+5log2=5loga1+20logr⋯(1)5+152log2=5loga1+25logr⋯(2)(2)−(1)⟹52log2=5logr⇒r5=25/2⇒r=√2代回(1)⇒5+5log2=5loga1+10log2⇒loga1=1−log2⇒a1=5⇒(a1,r)=(5,√2),故選(5)
二、多選題
解:(1)◯:兩次考試成績適合散佈圖(2)×:相關係數0.016非常接近0,也就是兩者幾乎不相關,不適合用直線來表達兩科成績的關連性(3)◯:相關係數σ(x+5,y+5)σ(x+5)σ(y+5)=σ(x,y)σ(x)σ(y)=0.016(4)◯:相關係數σ(100x,100y)σ(100x)σ(100y)=1002σ(x,y)100σ(x)100σ(y)=σ(x,y)σ(x)σ(y)=0.016(5)◯:相關係數σ(x−ˉxsx,y−ˉysy)σ(x−ˉxsx)σ(y−ˉysy)=σ(xsx,ysy)σ(xsx)σ(ysy)=1sxsyσ(x,y)1sxsyσ(x)σ(y)=σ(x,y)σ(x)σ(y)=0.016,故選(1,3,4,5)
{x−32=y−53⋯(1)y−53=z−4⋯(2)xa=z−2⋯(3)y+13=z−2⋯(4),由(2)⇒y−53+2=(z−4)+2⇒y+13=z−2⇒(2)≡(4)由(1)及(2)⇒(x,y,z)=(2t+3,3t+5,t+4),t∈R(1)×:將(2t+3,3t+5,t+4)代入(3)⇒2t+3a=t+2⇒a=2t+3t+2=2−1t+2≠2,∀t∈R(2)◯:將(2t+3,3t+5,t+4)代入(3)⇒t=2a−32−a有唯一解⇒(x,y,z)有唯一解(3)◯:{x−32=y−53xa=z−2⇒(x,y,z)=(2t+3,3t+5,2t+3a+2),t∈R⇒有無限多組解(4)×:{xa=z−2y+13=z−2⇒(x,y,z)=(at,3t−1,t+2),t∈R⇒有無限多組解(5)◯:{x−32=y−53y−53=z−4⇒(x,y,z)=(2t+3,3t+5,t+4),t∈R⇒有無限多組解故選(2,3,5)
解:{A=[100−1]⇒A2=[1001]=IB=[1/2−√3/2√3/21/2]=[cosπ/3−sinπ/3sinπ/3cosπ/3]⇒逆時針旋轉60∘⇒B6=I(1)×:{AB=[100−1][1/2−√3/2√3/21/2]=[1/2−√3/2−√3/2−1/2]BA=[1/2−√3/2√3/21/2][100−1]=[1/2√3/2√3/2−1/2]⇒AB≠BA(2)◯:{A2B=IB=BBA2=BI=B⇒A2B=BA2(3)×:{A11B3=(A2)5A再旋轉180∘=A[cosπ−sinπsinπcosπ]=[100−1][−100−1]=[−1001]B6A5=I(A2)2A=IA=A=[100−1]⇒A11B3≠B6A5(4)◯:{AB12=A(B6)2=AI=AA7=(A2)3A=IA=A⇒AB12=A7(5)◯:(ABA)15=(ABA)(ABA)⋯(ABA)=ABA2BA2B⋯A2BA=ABIBIB⋯IBA=AB15A故選(2,4,5)
解:(1)×:{limx→∞y=∞limx→−∞y=−∞⇒圖形沒有最高點,也沒有最低點(2)×:y′=0⇒3x2+2=0⇒無實數解,即無水平切線(3)◯:y′=3x2+2>0⇒圖形為嚴格遞增⇒圖形與任一水平線只有一個交點(4)◯:(a,b)在圖形上⇒b=a3+2a+3⇒−b=−a3−2a−3⇒−b+6=(−a)3+2(−a)+3⇒(−a,−b+6)在圖形上(5)◯:面積=∫x=1x=0x3+2x+3dx=[14x4+x2+3x]|10=14+1+3>4,故選(3,4,5)
解:
令{A(−2,7)B(−1,6)圓心O⇒直線¯OB的方向向量為(4,3)⇒直線¯OB方程式:x+14=y−63;O在直線¯OB上⇒令O(4t−1,3t+6)⇒¯OA=¯OB⇒√(4t+1)2+(3t−1)2=√(4t)2+(3t)2⇒2t+2=0⇒t=−1⇒O(−5,3)⇒圓半徑r=¯OB=√(−4)2+(−3)2=5⇒圓方程式:(x+5)2+(y−3)2=52⇒x2+y2+10x−6y+9=0⇒{a=10b=−6c=9
解:
假設底面正方形邊長為x,紙盒的高為y,見上圖;由題意知:{灰色面積=4xy+x2=432容量=x2y,由算機不等式x2+2xy+2xy3≥3√x2×2xy×2xy⇒x2+4xy3≥3√4x4y2⇒4323≥3√4x4y2⇒1443≥4x4y2⇒√14434≥x2y⇒864≥x2y⇒容量最大為864,此時x2=2xy,即x=2y⇒容量=x2y=4y2⋅y=4y3=864⇒y=6⇒x=2×6=12
假設底面正方形邊長為x,紙盒的高為y,見上圖;由題意知:{灰色面積=4xy+x2=432容量=x2y,由算機不等式x2+2xy+2xy3≥3√x2×2xy×2xy⇒x2+4xy3≥3√4x4y2⇒4323≥3√4x4y2⇒1443≥4x4y2⇒√14434≥x2y⇒864≥x2y⇒容量最大為864,此時x2=2xy,即x=2y⇒容量=x2y=4y2⋅y=4y3=864⇒y=6⇒x=2×6=12
解:
(1)f(x)=x^3-6x^2-x+30=(x-3)(x-5)(x+2) \Rightarrow f(x)=0的解為 \bbox[red, 2pt]{x=3,5,-2} \\(2) \cos \angle ACB = {a^2+b^2 - \overline{AB}^2 \over 2ab} \Rightarrow -{1\over 2}= {9+25-\overline{AB}^2 \over 30} \Rightarrow \overline{AB} = 7\\ \Rightarrow \overline{DE} = \overline{AE} +\overline{BD}-\overline{AB} =5+3-7=1 \Rightarrow \cfrac{\triangle CDE}{ \triangle ABC} = \cfrac{\overline{DE}}{\overline{AB}} = \cfrac{1}{7} \Rightarrow \triangle CDE={1\over 7}\triangle ABC \\ = {1\over 7}\times {1\over 2}\times \overline{BC}\times \overline{AC}\sin \angle ACB= {1\over 14}\times 15\times {\sqrt 3\over 2} = \bbox[red, 2pt]{{15 \over 28}\sqrt 3}
解:(1)\cases{A(-2,7,15) \\ B(1,16,3) \\ C(10,7,3)} \Rightarrow \cases{\overrightarrow{AB}= (3,9,-12) \\ \overrightarrow{AC} =(12, 0,-12)} \Rightarrow \vec n= \overrightarrow{AB} \times \overrightarrow{AC} = (-108,-108,-108) \\ \Rightarrow 過A且法向量為\vec n的平面方程式: -108(x+2)-108(y-7)-108(z-15)=0\\ \Rightarrow \bbox[red, 2pt]{x+y+z=20}\\ (2) 外心P(a,b,c) \Rightarrow \cases{\overline{PA} =\overline{PB} =\overline{PC} \\ P在\triangle ABC平面上} \\\Rightarrow \cases{(a+2)^2 +(b-7)^2 +(c-15)^2 =(a-1)^2+(b-16)^2+(c-3)^2 \\ (a-1)^2+(b-16)^2+(c-3)^2 =(a-10)^2+(b-7)^2+(c-3)^2 \\ a+b+c=20 } \\ \Rightarrow \cases{a+3b-4c=-2\\ a-b=-6 \\ a+b+c=20} \Rightarrow (a,b,c)= \bbox[red,2pt]{(3,9,8)}
-- END (僅供參考) --
第五題的詳解應該有錯喔 Q(x)必是四次式
回覆刪除且係數均為正數,(2)Q(x)的常數項不可能為-4
謝謝提醒,已修正替換另一個例子!
刪除算幾不等式 不是柯西不等式
回覆刪除選擇C
刪除已修訂, 謝謝!
刪除