Loading [MathJax]/jax/element/mml/optable/MathOperators.js

2021年3月30日 星期二

105年全國高中教甄聯招-數學詳解

 教育部受託辦理105學年度公立高級中等學校教師甄選

一、單選題


:{45=455=565=675=795=9115=14+5+6+7+9+1=32{(A)125=2(B)135=3(C)145=4(D)155=5,(A)

(A)cos225sin225=cos50(B)1+sin3401sin340=1sin201+sin20<0(C)sin23cos112sin292sin67=sin23cos68+sin68cos23=sin(6823)=sin45=cos45(D)2tan67.51tan267.5=tan(2×67)=tan135=tan45=1(C)

x275y29=1c2=75+9=84x2t2+1+y27t=1t2+1=7t+c2=7t+84t2+t90=0(t9)(t+10)=0t=10(97t>0)(D)

2016=1214=a14+b14{a+b=12a<ba,bN(a,b)=(1,11)(5,6)5(x,y)=(114,11214),(2214,10214),,(5214,6214)(C)



f(x)=a(x2)(x3)(12)(13)+b(x1)(x3)(21)(23)+c(x1)(x2)(31)(32){f(1)=af(2)=bf(3)=cy=f(x)(1,a),(2,b),(3,b)abcd:{d=0:(a,b,c)=(1,1,1),(2,2,2),,(6,6,6)6d=1:(1,2,3),(2,3,4),,(4,5,6)4d=1:(6,5,4),(5,4,3),,(3,2,1)4d=2:(1,3,5),(2,4,6)2d=2:(6,4,2),(5,3,1)26+4+4+2+2=181863=112f(x)abcf(x)1112=1112(B)


ABCDECABDE:Day1Day2Day3Day4Day5AB?ACC?BD?DE?EDay2Day3Day4BC,D,EA3A,C,D,EB4A,C,ED3A,C,DE3CB,D,EA3A,D,EB3A,B,ED3A,B,DE3DB,C,EA3A,C,EB3A,B,C,ED4A,B,CE3EB,C,DA3A,C,DB3A,B,CD3A,B,C,DE4(3+4+3+3)×41=51(B)



α,β{α+β=4aαβ=4a24a3b+9αβ=2101,a,bN(α+β)24αβ=(αβ)216a24(4a24a3b+9)=40416a+12b=4404a+3b=110a=2,5,,26=2+3k,k=08(A)
:(x0,y0)ax+by=c{x=x0+bgcd(a,b)ty=y0agcd(a,b)t,tZ(x0,y0)2x+3y=kx0(x0+3t,y02t)tZx0x0300<x03(1)122yy0,y02,,y02×121y02×121>0y02×12202×122y0>2×121(2)(1)(2){x0=1,2,3y0=1,2k3×2=6(B)
(A)×:f(x)=3x3x22x{f(1)=0f(x)=9x22x2f(1)=922=5(1,f(1))=(1,0),5:y=5(x1)y=5x5(B):|10f(x)dx|=|[34x413x3x2]|10|=|712|=712(C):f(x)=018x2=0x=1/9f(1/9)=56243(D):f(x)=0x(x1)(3x+2)=0x=0,1,2/3(BCD)


(A):{A=42B=126C=54D=17{μA=42/6=7μB=126/6=21μC=54/6=9μD=17/6<3μB>μC>μA>μD(B)×:{Var(A)=(62+12+12+22+22+22)/6Var(C)=(62+12+12+22+22+22)/6σA=σC(C):{A,B,CD{r1,r2>0r3<0;{r1=(AiuA)(BiuB)(AiuA)2(BiuB)2=15050450=1r2=(AiuA)(CiuC)(AiuA)2(CiuC)2=505050=1r1=r2(D):σA=(62+12+12+22+22+22)/6=506=53=533(ACD)



f(x)=x52px4+x33px2+x2(A):f(1)=15p0,pZx1(B):f(1)=055p=0p=1f(2)=4444p=0(C):f(x)f(x)=0,x{±1,±2}{(A):f(1)0(B):f(1)=55pf(1)0p1f(2)0f(2)=4044p0pZf(x)(D)×:f(x)=(x+1)2(x3(p+2)x2+4px4)+(9p+10)x+(4p+5)(x+1)2{9p+10=04p+5=0(x+1)2(ABC)


(A)×:A=[4321]det(AλI)=0λ=1,2(AI)(A2I)=A23A+2I=0(B):A47A3+10A28A+3I=(A23A+2I)(A24A4I)12A+11I=12A+11I=[48362412]+[110011]=[37362423](C):B=[λ100λ2]=[1002](D)×:A=PBP1A10=PB10P1=P[100210]P1P1=[2311][2311](BC)

第二部份
一、 填充題
Γ:x2y2=9a=b=3{¯AF2¯AF1=2a=6¯BF2¯BF1=2a=6¯AF2+¯BF2(¯AF1+¯BF1)=12=¯AF2+¯BF2¯AB=12¯AF2+¯BF2=12+15=27ABF2=¯AB+¯AF2+¯BF2=15+27=42
{A(3,2,2)B(5,4,3)P(x,y,0){PE:z=0ABE¯PA+¯PB=(x+3)2+(y2)2+(2)2+(x+5)2+(y4)2+32ABE¯PA+¯PB=¯AB=22+22+52=33PL:ABEL:x+32=y22=z25(2t3,2t+2,5t+2)(2t3,2t+2,5t+2)=(x,y,0)5t+2=0t=25{x=2253=195y=225+2=14533(x,y)=(195,145)


{x+7y404x5y+1705x+2y200{A(2,5)B(3,1)C(4,0)f(x,y)=axy=k{f(C)f(A)f(C)f(B){4a2a54a3a1{a5/2a1/7a52


{a1=2an+1=2an1an=2an11=2(2an21)1=22an221==2n1a12n22n21=2n(2n11)=2n2n1+1=2n1+1>1000n=11(


:

\cases{A:垂直積木\\ B:水平積} \quad \Rightarrow \cases{6A:1種\\ 6B:1種\\ 2A4B:4種\\ 4A2B: 5種}\Rightarrow 共有1+1+4+5=\bbox[red,2pt]{11}種

:

\cases{\cos \angle PBA={4+a^2-1\over 4a} ={a^2+3\over 4a} \\ \cos \angle PBC ={4+a^2-9\over 4a} ={a^2-5\over 4a} =\sin \angle PBA} \Rightarrow \left( {a^2+3\over 4a}\right)^2 +\left({a^2-5\over 4a} \right)^2=1\\ \Rightarrow a^4-10a^2+17=0 \\ \Rightarrow 面積=a^2= {10+\sqrt{32}\over 2} =\bbox[red,2pt]{5+2\sqrt 2}



令\cases{\overline{AP}=a \\\overline{PQ}=x} \Rightarrow \cases{\overline{CQ}=1-a\\ \overline{BP}=2-a} \Rightarrow \overline{BQ}=2-(1-a)=1+a\\ \Rightarrow \cases{\cos 60^\circ={1\over 2} =\cfrac{(2-a)^2+(1+a)^2 -x^2}{2(1+a)(2-a)} \cdots(1)\\ \cos 45^\circ={\sqrt 2\over 2}=\cfrac{(2-a)^2+x^2-(1+a)^2}{2(2-a)x}\cdots(2)}\\ 由(1)可得 x^2=3a^2-3a+3 代入(2) \Rightarrow a=2-\sqrt 3(2+\sqrt 3不合,違反a < 2)\\ \frac{\triangle BPQ}{\triangle ABC} =\frac{\overline{BP}\times \overline{BQ}}{\overline{BA}\times \overline{BC}} \Rightarrow \triangle BPQ= \triangle ABC\times {(2-a)(1+a)\over 4} =\sqrt 3\times {(2-a)(1+a)\over 4}\\ =\bbox[red,2pt]{\frac{9-3\sqrt 3}{4}}


令\cases{x'=4x+7y\\ y'=6x+2y} \Rightarrow {|x'|\over 3} +{|y'| \over 4}\le 1 所圍面積= 4\times {1\over 2}\times 3\times 4=24\\ \begin{Vmatrix} 4& 7 \\ 5 & 2 \end{Vmatrix} =27 \Rightarrow {|4x+7y|\over 3} +{|5x+2y| \over 4}\le 1所圍面積={24\over 27} =\bbox[red,2pt]{8\over 9}


\begin{bmatrix} 1 & 2 \\ 3& 2\end{bmatrix}^5 = 4^5\begin{bmatrix} 1/4 & 2/4 \\ 3/4& 2/4\end{bmatrix}^5,由於\begin{bmatrix} 1/4 & 2/4 \\ 3/4& 2/4\end{bmatrix}每一行的和為1,因此為馬可夫矩陣(轉移矩陣)\\ \Rightarrow \begin{bmatrix} 1/4 & 2/4 \\ 3/4& 2/4\end{bmatrix}^5 也是馬可夫矩陣 \Rightarrow 4^5\begin{bmatrix} 1/4 & 2/4 \\ 3/4& 2/4\end{bmatrix}^5\begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1\end{bmatrix}的矩陣元素和 \\=4^5(1+2+3+ 3+2+1) =4^5 \times 12 = 1024 \times 12 = \bbox[red,2pt]{12288}

(x-6)^2+(y-7)^2 = 10 \Rightarrow \cases{圓心C(6,7)\\ 半徑r=\sqrt{10}} \Rightarrow \overline{OC}= \sqrt{6^2+7^2} = \sqrt{85} \\\Rightarrow \overline{OA}=\overline{OB}= \sqrt{\overline{OC}^2-r^2} =5\sqrt 3;\\因此令\angle COB= \theta,則\cases{ \sin \theta = \sqrt{10}/\sqrt{85} \\ \cos \theta=5\sqrt 3/\sqrt{85}} \Rightarrow \sin \angle AOP= \sin 2\theta = 2\sin\theta \cos \theta = {2\sqrt{30} \over 17}\\ \triangle OAP: {\overline{AP} \over \sin 2\theta} ={\overline{OP} \over \sin \angle OAP} = {\overline{OA} \over \sin \angle APO} \Rightarrow {\overline{PO} \over \overline{PA}} ={\sin \angle OAP \over \sin 2\theta} ={\sin \angle OAP \over {2\sqrt{30}/ 17}}=k\\ k要最大,即\sin \angle OAP=1,此時k={17\over 2\sqrt{30}} =\bbox[red, 2pt]{17\sqrt{30}\over 60}

計算題



\bbox[blue,2pt]{題目有誤}



\cases{B=P_0\\ C=P_n} \Rightarrow \cases{|\overrightarrow{AP_0}| =|\overrightarrow{AB}|=1 \\ \overrightarrow{P_0P_k} ={k\over n} \overrightarrow{P_0P_n} ={k\over n} \overrightarrow{BC},k=0-n}\\S_n = \sum_{k=0}^{n-1}\overrightarrow{AP_k} \cdot \overrightarrow{AP_{k+1}} =\sum_{k=0}^{n-1} (\overrightarrow{AP_0} +\overrightarrow{P_0P_k}) \cdot (\overrightarrow{AP_0}+\overrightarrow{P_0P_{k+1}}) \\=\sum_{k=0}^{n-1} (|\overrightarrow{AP_0}|^2 + \overrightarrow{AP_0} \cdot \overrightarrow{P_0P_{k+1}} +\overrightarrow{P_0P_k} \cdot \overrightarrow{AP_0}+ \overrightarrow{P_0P_k} \cdot \overrightarrow{P_0P_{k+1}})  \\=\sum_{k=0}^{n-1} (1 + \overrightarrow{AP_0} \cdot \overrightarrow{P_0P_{k+1}} +\overrightarrow{P_0P_k} \cdot \overrightarrow{AP_0}+ {k(k+1)\over n^2}) \\=\sum_{k=0}^{n-1} (1 + \overrightarrow{AP_0} \cdot (\overrightarrow{P_0P_k} +\overrightarrow{P_0P_{k+1}} ) + {k(k+1)\over n^2}) \\ =\sum_{k=0}^{n-1} (1 + \overrightarrow{AB} \cdot ({2k+1\over n}\overrightarrow{BC} ) + {k(k+1)\over n^2}) =\sum_{k=0}^{n-1} (1 + {2k+1\over n}(\overrightarrow{AB} \cdot \overrightarrow{BC} ) + {k(k+1)\over n^2}) \\ = \sum_{k=0}^{n-1} (1 + {2k+1\over n}(-{1\over 2}) + {k(k+1)\over n^2}) = \sum_{k=0}^{n-1} (1 - {2k+1\over 2n} + {k(k+1)\over n^2}) \\ =n-{n^2-n+1 \over 2n} +{n^2-1\over 3n} \\ \Rightarrow \lim_{n\to \infty}{S_n\over n} =\lim_{n\to \infty} \left(1-{n^2-n+1 \over 2n^2} +{n^2-1\over 3n^2} \right) =1-{1\over 2}+{1\over 3}= \bbox[red,2pt]{5\over 6}
===================================================


沒有留言:

張貼留言