2021年8月30日 星期一

107年新竹女中教甄-數學詳解

國立新竹女中 107 學年度代理教師甄選

一、填充題(每格 5 分,共 70 分)

解答

g(x)=xkf(x)+x+k=0f(x)=g(x)y=g(x)=xk1{y=g(x)y=ex,x0k1{y=g(x)y=lnx,x>0k1
解答x4+23(log2k)x2+4(log2k)2=0x2=23(log2k)±12(log2k)216+4(log2k)22=3(log2k)±2(log2k)21{(log2k)21>03(log2k)2(log2k)21>0{(log2k)2>13(log2k)>2(log2k)21log2k<0{log2k>1log2k<13(log2k)2>4(log2k)244>(log2k)2k<1{log2k>1log2k<12>log2k>2k<1{1<log2k<22<log2k<1k<11/4<k<1/2

解答an=¯AnAn+1=24n,nNx=8+a12a2a32+a4+a52a6a72+a8+=8+(a4+a8+a12+)+12(a1+a5+a9+)12(a3+a7+a11+)(a2+a6+a10+)=8+(a411/16)+12(a111/16)12(a311/16)(a211/16)=8+1615+1281615122161541615=8+165(21)y=a12a32+a52a72+a92=12(a1+a5+a9+)12(a3+a7+a11+)=12(a111/16)12(a311/16)=12816151221615=1625x+y=8+165(21)+1625=24+3225
解答{ABCD{ACBDABCDA7ABB6{B=CC1DCD6BCC5DC,DBD57×6×6+7×6×5×5=252+1050=1302
解答P()=P()+P()P()=35+3+45+43+45+3+4=772
解答
PC使PD=2PCPQ=PA+PDB¯PQ{cosAPQ=32+62(36)22×3×6=14sinAPQ=154cosDPQ=62+(36)2322×6×36=386sinDPQ=108PABC=PAB+PBC=12(3×3×154+3×6×108)=3152
解答:3sinC=2×6=12sinC=14cosC=154=|1cosAcosBcosA1cosCcosBcosC1|=1+2cosAcosBcosC+cos2A+cos2Bcos2C=A+B+C=180cosC=cos(A+B)cos2C=cos2(A+B)=(cosAcosBsinAsinB)2=cos2Acos2B2cosAcosBsinAsinB+(1cos2A)(1cos2B)=1+2cos2Acos2B2cosAcosBsinAsinBcos2Acos2B=1+2cosAcosB(cosAcosBsinAsinB)cos2Acos2B=1+2cosAcosBcos(A+B)cos2Acos2Bcos2A+cos2B=1+2cosAcosBcos(A+B)cos2C=2+2cosAcosB(cosC+cos(A+B))2cos2C=2+02cos2C=22×1516=18
解答{u=(1,2,3)v=(3,1,2)LMθcosθ=uv|u||v|=12LM60120ABCD=|AB||CD|cosθ=65(±12)=±15AC{¯AC¯AB¯AC¯CD{ACAB=0ACCD=0¯BD2=|BD|2=(BA+AC+CD)(BA+AC+CD)=|BA|2+|AC|2+|CD|2+2(BAAC+ACCD+CDBA)=62+42+52+2(0+0±15)=77±30=10747¯BD=10747

解答
{¯ABAPB=90¯ADAPD=90BPD{A=90¯AD=3ׯAB{ABD=60ADB=30{E¯ABF¯AD{AEP=120AFP=60{EAP=(62)2π×120360=12πFAP=(322)2π×60360=34π{EAP=12ׯAPׯBP=14×322×126=383APD=14ׯAPׯPD=12×322×326=983=(12π343)+(34π943)=54π323

解答
ABD{DAB=CABCAD=γαABD=90+CBD=90+βADB=180DABABD=90+αβγ¯AB¯AD=sin(90+αβγ)sin(90+β)=cos(αβγ)cosβ=cos(αβγ)8/17¯AD=¯AC¯AB¯AD=¯AB¯AC=cosγ=cos(αβγ)8/17817cosγ=cos(αβγ)=cos(αβ)cosγ+sin(αβ)sinγ=(cosαcosβ+sinαsinβ)cosγ+(sinαcosβsinβcosα)sinγ=(45817+351517)cosγ+(35817151745)sinγ=7785cosγ3685sinγ3685sinγ=3785cosγtanγ=sinγcosγ=37/8536/85=3736
解答z=(x+y|xy|)÷2xyzxyz1114111214221314331414441514541614642115112225222325332425442525552625653116113226223336333436443536553636663259=32+5962=6136
解答{tanα+tanβ=(m+1)tanαtanβ=m+4:(m+1)24(m+4)0{tan(α+β)=(m+1)1(m+4)=m+1m+3(m5)(m+3)0m5m3(1)n=1tann1(α+β)|tan(α+β)|<1|m+1m+3|<1(m+1)2<(m+3)2m>2(2)(1)(2)m5
解答g(x)=x+ba{g(2)=0limx2g(x)x2=16{b+2=ag(2)=1/6b=7a=3(a,b)=(3,7)

解答[0,4]n4/n{Un=4n((4n)3+(8n)3++(4nn)3)Ln=4n(03+(4n)3++(4(n1)n)3)UnLn=4n43=256n<0.01n>25600n=25601

二、計算或證明題(每題 10 分,共 30 分,須有計算或證明過程)

解答(2n1)(2n+1)=4n21<4n2(2n1)(2n+1)<(2n)2S=1×3×5×(2n1)(2n+1)S2=12×32×52××(2n1)2(2n+1)=(1×3)(3×5)(5×7)((2n3)(2n1))((2n1)(2n+1))<22×42×62××(2n)2(2n+1)S2<22×42×62××(2n)22n+1S<2×4×6××(2n)0<S2×4×6××(2n)<12n+10<an<12n+10<limnan<limn12n+1=0limnan=0
解答y=x3+ax2+x+1y=3x2+2ax+1P(t,t3+at2+t+1)3t2+2at+1PL:y=(3t2+2at+1)(xt)+t3+at2+t+1L(0,0)3t32at2t+t3+at2+t+1=0f(t)=2t3+at21=0f(t)=6t2+2at=02t(3t+a)=0t=0,a/3f(0)f(a/3)<01(2a3/27+a3/91)<0a3271>0a3>1a>3

解答
(1)
DBP+CBM=90=CBM+BMCDBP=BMCCMBDBP(AAA){¯CM=a¯CB=b¯BM=c=1a{¯BD=ka=1bk=1ba¯DP=kb¯BP=kcPBD=k(a+b+c)=1ba(a+b+1a)=1b2a=1(c2a2)a=1((1a)2a2)a=2aa=2(2)MBC:{¯MC=a¯MB=c=1a¯BC=bC=90b2=(1a)2a2=12ab=12aMBC=f(a)=12×a×12af(a)=012aa12a=013a12a=0a=13f(13)=12×13×13=318
================ end ==================
解題僅供參考,其他教甄試題及詳解


沒有留言:

張貼留言