Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

2021年8月19日 星期四

110年新竹市建功高中國中部-教師甄選-數學詳解

新竹市立建功高中 110 年第一次正式教師甄選【國中數學】 

一、 基礎題

解答2020÷202020202021+12022=2020÷2020×2021+20202021+12022=2020÷2020×20222021+12022=20212022+12022=1
解答(mn):(m+n):mn=1:7:8{mn=k(1)m+n=7k(2)mn=8k(3)(1)(2){m=4kn=3k(3)12k2=8k{k=0()k=2/3m+n=7k=143
解答17=0.¯14285765n÷65,1,5,1,252021=5mod6f(52021)=175=5
解答n=180(n2)2021<180(n2)<2021+1802021<180(n2)<220111.2<n2<12.213.2<n<14.2n=14

解答
PQR¯AD¯BC¯CD=r{ADO=12ׯAD×r=12ׯAO×rBCO=12ׯBC×r=12ׯBO×r{¯AO=¯AD¯OB=¯BC¯AB=¯AO+¯OB=¯AD+¯BC=3+2=5
解答ab=b+1=c+3{a=c+4b=c+2a2+b2+c2=(c+4)2+(c+2)2+c2=3(c+2)2+88=8
解答A=90¯BC2=¯AB2+¯AC2=(62)2+(6+2)2=16¯AB=4=2RR=2=R2π=4π
解答x(x+1)(x+2)(x+3)(y)(x+4)x(x+1)x+2=(x+3)yx+4y=x(x+1)(x+4)(x+2)(x+3)
解答{x=7m+3y=7n+2,m,nZ4xxy+5y=4(7m+3)(7m+3)(7n+2)+5(7n+2)=14m+14n49mn+16=7(2m+2n+7mn+2)+22
解答{n+100=m2n+168=n2n2m2=68(n+m)(nm)=34×2(17×4,n,mN){n+m=34nm=2{n=18m=16n=162100=156
解答=A{=A/2=A/2{{=A2×310=320A=A2×710=720A{=A2×1315=1330A=A2×215=230A:=(320+1330):(720+230)=35:25=7:5
解答{f(x)=5+3xx2g(x)=x2+ax+bf(x5)2=5+3(x5)(x5)22=x2+13x37=g(x){a=13b=37a+b=24
解答
¯AP=a¯PB=7a{APDBCPa:2=3:7aa=1,6ADPBCP2:a=3:7aa=14/5a=1,6,14/53
解答:x314x=(x2+3x5)(x3)15x2+3x5=0x314x=15
解答S(n)=nk=1k2992++20212=S(2021)S(98)=16(2021202240439899197)=202133740434933197=19()=2
解答{A=2100+1299+1=21299+1B=2101+12102+1<1C=2104+12103+1=212103+1C>A>B
解答x2=1x16+3x32x2+3x7=13x+2+3x7=4
解答x>8x<2(x8)(x2)>0x210x+16>0x2+10x16<014x2+52x4<0{p=1/4q=5/2p+q=14+52=94
解答{u=x+2yv=x2y{|u|=3|v|=3=6×6=36{|x+2y|=3|x2y|=3=36
解答\langle a_n \rangle = \color{blue}0,1, \color{blue}1,2,3, \color{blue}2,4,5,6, \color{blue}3,7,8,9,10, \color{blue}4, 11,12, 13,14,15,\color{blue}5,\dots\\ 令\cases{\langle b_n\rangle =\langle n-1\rangle \\ \langle c_n\rangle =\langle n\rangle} ,則\langle a_n \rangle = b_1,c_1,b_2,c_2,c_3, b_3,c_4,c_5, c_6,b_4,c_7, c_8,c_9,c_4, c_{10},b_5,\dots\\ \Rightarrow b_k之前(含b_k)共有k+\sum_{i=1}^{k-1} i=k+{1\over 2}k(k-1)項;\\ 令f(k)=k+{1\over 2}k(k-1)\Rightarrow f(14)=14+{1\over 2}\cdot 14\cdot 13=105 \Rightarrow \cases{a_{105}=b_{14}=13 \\ a_{104}={1\over 2}\cdot 14\cdot 13=91} \\ \Rightarrow a_{106}=92 \Rightarrow a_{106}-a_{105}=92-13=\bbox[red,2pt]{79}

二、 進階題

解答xy+yz+zx=xyz \Rightarrow {1\over z}+{1\over x}+{1\over y}=1 \Rightarrow {1\over 6}+{1\over 2}+{1\over 3}=1 \Rightarrow x+y+z= 2+3+6= \bbox[red, 2pt]{11}
解答{1\over a}+{1\over b}={a+b\over ab}={1\over a-b} \Rightarrow ab=a^2-b^2 \Rightarrow {b\over a}={a^2-b^2\over a^2} =1-({b\over a})^2\\ \Rightarrow x=1-x^2,其中x={b\over a} \Rightarrow x^2+x-1=0 \Rightarrow x=\bbox[red,2pt]{\sqrt 5-1\over 2}(a,b \gt 0 \Rightarrow b/a\gt 0,負值不合)
解答
\angle C=90^\circ \Rightarrow \overline{AB}=\sqrt{\overline{AC}^2+ \overline{BC}^2} =\sqrt{3^2+4^2}=5;\\\triangle ABC ={1\over 2}\overline{AC}\times \overline{BC}={1\over 2}\overline{AB}\times \overline{CD} \Rightarrow \overline{CD}={3\times 4\over 5} ={12\over 5} \Rightarrow \overline{AD}=\sqrt{3^2-({12\over 5})^2}={9\over 5}\\ \Rightarrow \overline{AG}= \overline{AD}={9\over 5} (\because \triangle ADF\cong \triangle AGF)\\ 又\overline{AE}為\angle A的角平分線\Rightarrow {\overline{AC}\over \overline{AB}}= {\overline{CE}\over \overline{EB}} \Rightarrow \overline{CE} ={3\over 8}\times 4= {3\over 2}\\\overline{FG}\parallel \overline{BC} \Rightarrow {\overline{AG} \over \overline{AC}} ={\overline{FG} \over \overline{EC}} \Rightarrow \overline{FG}= {9\over 10 } \Rightarrow \overline{CF} =\overline{CD}-\overline{DF} =\overline{CD}-\overline{FG} ={12\over 5}-{9\over 10}=\bbox[red,2pt]{3\over 2}
解答\cases{等差數列(a_n):首項a_1,公差d_a\\ 等差數列(b_n):首項b_1,公差d_b} \Rightarrow {a_5\over b_3+b_{2n-3}} +{a_{2n-5} \over b_7+b_{2n-7}}\\ ={a_1+4d_a\over b_1+2d_b+b_1+(2n-4)d_b} +{a_1+(2n-6)d_a\over b_1+6d_b+b_1+(2n-8)d_b}\\ ={a_1+4d_a\over 2b_1 +(2n-2)d_b} +{a_1+(2n-6)d_a\over 2b_1 + (2n-2)d_b} ={2a_1+(2n-2)d_a\over 2b_1 + (2n-2)d_b} =\color{blue}{{a_n\over b_n}={n\over 2n+1}}\\ 因此{A_{23}\over B_{23}} ={\sum_{k=1}^{23}a_k\over \sum_{k=1}^{23}b_k} ={a_1+a_{23}\over b_1+b_{23}} ={2a_1+22d_a\over 2b_1+ 22d_b} ={a_{12}\over b_{12}} =\bbox[red,2pt]{12 \over 25}
解答
延長\overline{AP}交\overline{BC}於D點 \Rightarrow \angle ADB = 180^\circ -\angle B-\angle BAD= 180^\circ -38^\circ-22^\circ =120^\circ\\ 作\angle ADB 角平分線分別交\overline{BP}與\overline{AB}於E、F兩點,因此\angle BED=90^\circ\Rightarrow \overline{DF}為\overline{BP}的中垂線\\ \Rightarrow \angle FPE=\angle FBE=8^\circ;\\\cases{\angle FAD=\angle DAC =22^\circ\\ \overline{AD}=\overline{AD}\\ \angle ADF=\angle ADC=60^\circ} \Rightarrow \triangle AFD\cong \triangle ACD \Rightarrow \overline{AF}=\overline{AC} \Rightarrow \triangle APF\cong \triangle APC \\ \Rightarrow \angle APC= \angle APF = 180^\circ -\angle FPE-\angle FPD=180^\circ-8^\circ-30^\circ= \bbox[red,2pt]{142^\circ}

解答\angle CDF \cong \triangle ADE (RHS) \Rightarrow \angle CDF=\angle ADE =(90^\circ-60^\circ)\div 2=15^\circ \\ \Rightarrow \cos \angle CDF = {\overline{CD}\over \overline{DF}} \Rightarrow {\sqrt 6+\sqrt 2\over 4}={1\over \overline{DF}} \Rightarrow 正\triangle 邊長\overline{DF}={4\over \sqrt 6+\sqrt 2} =\overline{EF}\\ \Rightarrow \overline{BE} =\overline{BF} ={\overline{EF}\over \sqrt 2} ={4\over 2\sqrt 3+2} \Rightarrow \triangle BEF={1\over 2}\times \left( {4\over 2\sqrt 3+2} \right)^2 =\bbox[red,2pt]{2-\sqrt 3}
解答有一三角形三邊長分別為5,12,13,則其面積={1\over 2}\times 5\times 12=30 \Rightarrow 欲求\triangle 面積=30\times {4\over 3}=\bbox[red, 2pt]{40}\\相關證明\href{https://chu246.blogspot.com/2018/10/blog-post.html}{按這裡}
解答{\sqrt{15}\over \sqrt{11}+\sqrt 6+\sqrt 5} ={\sqrt{15}(\sqrt 6+\sqrt 5-\sqrt {11})\over (\sqrt 6+\sqrt 5+\sqrt {11})(\sqrt 6+\sqrt 5-\sqrt {11})} = {\sqrt{90}+\sqrt{75}-\sqrt{165} \over 2\sqrt{30}}\\ ={\sqrt{2700} +\sqrt{2250}-\sqrt{4950} \over 60} ={30\sqrt 3+15\sqrt{10}-15\sqrt{22}\over 60} =\bbox[red, 2pt]{2\sqrt 3+ \sqrt{10}- \sqrt{22}\over 4}
解答
作\overline{AQ}\bot \overline{BC}且\overline{AQ}交\overline{DG}於P,見上圖;\\因此\cases{\triangle APG \sim \triangle GFC\\ \triangle APD \sim \triangle DEB}(AAA) \Rightarrow {\triangle {APG} \over \triangle{APD}} ={\triangle {GFC} \over \triangle{DEB}} ={1\over 3} \Rightarrow \cases{\triangle APD=3/4\\ \triangle APG=1/4}\\ 又{\triangle BDE\over \triangle APD}={\overline{DE}^2\over \overline{AP}^2} \Rightarrow {3\over 3/4} ={\overline{DE}^2\over \overline{AP}^2} \Rightarrow \overline{DE}=2\overline{AP},因此\triangle ADG={1\over 2}\times \overline{DG}\times \overline{AP} \\ \Rightarrow 1={1\over 2}\times 2\overline{AP}\times \overline{AP} \Rightarrow \overline{AP}=1 \Rightarrow \overline{DG}=2 \Rightarrow 面方形DEFG=2\times 2=4\\ \Rightarrow \triangle ABC= \triangle ADG+\triangle BDE +\triangle CFG+ 正方形DEFG=1+3+1+4 =\bbox[red, 2pt]{9}
解答\cases{|a-b|=1 \Rightarrow b=a\pm 1\\ |b-c|=2 \Rightarrow c=b\pm 2\\ |c-d|=3 \Rightarrow d=c\pm 3} \Rightarrow d=a\pm 1\pm 2\pm 3 \Rightarrow |a-d|=|\pm 1\pm 2\pm 3|=0,2,4,6 \\ \Rightarrow 0+2+4+6 =\bbox[red, 2pt]{12}
解答\cases{3XXX\cases{千位數字和=3\times 3!=18\\ 百位數=十位數=個位數=2(0+1+2)=6} \Rightarrow 18666 \\ 2XXX\cases{千位數字和=2\times 3!=12\\ 百位數=十位數=個位數=2(0+1+3)=8} \Rightarrow 12888\\ 1XXX\cases{千位數字和=1\times 3!=6\\ 百位數=十位數=個位數=2(0+2+3)=10} \Rightarrow 7110} \\ \Rightarrow 總和=18666+12888+7110 =\bbox[red, 2pt]{38664}
解答\cases{xy(x+y)=-30\\ xy+(x+y)=-29} \Rightarrow \cases{\cases{x+y=-30\\ xy=1} \Rightarrow 無整數解\\ \cases{x+y=1\\ xy=-30} \Rightarrow (x,y)=(6,-5),(-5,6)} \\ \Rightarrow x^2+y^2=5^2+6^2= \bbox[red, 2pt]{61}
解答令u=x^2-3x,則x^2-3x+{5\over x^2-3x-2}=8 \Rightarrow u+{5\over u-2}=8 \Rightarrow u(u-2)+5=8(u-2)\\ \Rightarrow u^2-10u+21=0 \Rightarrow (u-7)(u-3)=0 \Rightarrow \cases{u=7 \\ u=3}\Rightarrow\cases{ x^2-3x-7=0\\ x^2-3x-3=0} \\ \Rightarrow \cases{判別式:9+28\gt 0有相異實根且兩根之積=-7 \\ 判別式:9+12\gt 0有相異實根且兩根之積=-3} \Rightarrow 四根之積=(-7)\cdot (-3)=\bbox[red, 2pt]{21}
解答abc=1 \Rightarrow \cases{1+a+ab= abc+a+ab= a(1+b+bc) \cdots(1)\\ 1+c+ca= abc+c+ca=c(1+a+ab)\cdots(2)}\\ 把(1)代入(2) \Rightarrow 1+c+ca=ca(1+b+bc)\\ 因此{x\over 1+a+ab} +{x\over 1+b+bc}+{x\over 1+c+ca}= {x\over a(1+b+bc)} +{x\over 1+b+bc} +{x\over ca(1+b+bc)}\\= {(c+ac+1)x\over ca(1+b+bc)} ={ca(1+b+bc)x\over ca(1+b+bc)} =x=\bbox[red,2pt]{2021}

三、 計算題

解答
令\cases{\overline{BD}=a \\內切圓半徑r=4},則\cases{\overline{CE}=a+1\\ \overline{AF}=a+2} \Rightarrow \cases{\overline{AF} =\overline{AE}=a+2\\ \overline{BF}=\overline{BD} =a\\ \overline{CD}=\overline{CE}=a+1}\\ 令s=(\overline{AB} +\overline{BC}+ \overline{CA})\div 2= 3a+3 \\\Rightarrow \triangle ABC面積= \sqrt{s(s-\overline{AB})(s-\overline{BC}) (s-\overline{AC})} ={1\over 2}\cdot r\cdot 2s\\ \Rightarrow \sqrt{(3a+3)(a+1)(a+2)a} ={1\over 2}\cdot 4\cdot (6a+6) \Rightarrow \sqrt{3a(a+2)} =12 \Rightarrow a(a+2)=48 \\\Rightarrow (a+8)(a-6)=0 \Rightarrow a=6 \Rightarrow \triangle ABC周長=2s= 6a+6=36+6=\bbox[red, 2pt]{42}
解答
作\overline{CE} \parallel \overline{DB},其中E在\overleftrightarrow{AB}上,並令\overline{BE}=a,見上圖;\\ 因此\angle ACE=\angle ADB=\angle A \Rightarrow \overline{EC}=\overline{EA} =a+3\\ 利用海龍公式可求得 \triangle ABC={15\over 4}\sqrt 3及\triangle AEC = {7\over 4}\sqrt{(2a+13)(2a-1)}\\ 又\triangle ABC =\triangle AEC\times {3\over a+3} \Rightarrow {15\over 4}\sqrt 3= {21\over 4(a+3)}\sqrt{(2a+13)(2a-1)} \\ \Rightarrow 121a^2+726a-1312=0 \Rightarrow (11a-16)(11a+82)=0 \Rightarrow a={16\over 11}\\ 因此\overline{AD}: \overline{DC}=3:a=3:{16\over 11} =\bbox[red,2pt]{33:16}
解答
\cases{\triangle ABC=a\\ \triangle CEF=b} \Rightarrow \triangle AEF=\triangle BCE={a-b\over 2}\\ \cases{\overline{AE}:\overline{EB} =\triangle ACE:\triangle BCE={a-b\over 2}+b:{a-b\over 2}=a+b:a-b\\ \overline{AF}: \overline{FC} =\triangle AEF:\triangle CEF = {a-b\over 2}:b} \\ \overline{EF}\parallel \overline{BC} \Rightarrow \overline{AE}:\overline{EB} =\overline{AF}: \overline{FC} \Rightarrow a+b:a-b={a-b\over 2}:b \Rightarrow (a-b)^2=2b(a+b)\\ \Rightarrow a^2-4ab-b^2=0 \Rightarrow a=(\sqrt 5+2)b \Rightarrow {b\over a}={1\over \sqrt 5+2}= \bbox[red, 2pt]{\sqrt 5-2}

 ================== END ======================

解題僅供參考,其他教甄試題及詳解

2 則留言:

  1. 計算第2題,用國中方法,我想到用畢氏定理

    先過B點,作垂直AC的高(BE)
    因為ABD是等腰三角形,所以BE可以平分AD

    令AE=ED=a,則DC=7-2a
    而ABE跟CBE都是以h為同高的直角三角形

    就可以利用畢氏定理
    3平方減a平方=5平方減(7-a)平方
    就可以算出a,進而找出AD:DC

    小分享,謝謝老師提供解答分享

    回覆刪除