Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

2021年8月9日 星期一

110年鳳山高中教甄-數學詳解

110 年國立鳳山高級中學教師甄選初試筆試試題

一、填充題:(每題 5 分,共 70 分)

解答

P(1,2)L1:y=m(x1)+2{A(m2m,0)B(0,2m)AB=(2mm,2m)L2:3x+y+3=0u=(1,3)¯CD=ABu=ABu|u|=7(3m+2/m)103m=2m(m<0)m=23¯CD=7+43/210=710+41510
解答{f(0)=df(1)=a+b+c+d{f(02)=4df(21)=4abcd{8a+4b2c+d=4d27a+9b3c+d=4abcd{4a2b+cd=213a5b+cd=29a=3b{a=3,b=9d=1(ad=3)c=5a=3,b=9d=1c=9(a,b,c)=(3,9,5,1)(3,9,9,1)y=f(x)f(x)=3ax2+2bx+c=04b212ac>0b3>3ac(3,9,5,1)f(x)=3x3+9x2+5x+1
解答

OAB5{O(0,0)B(5,0)A(52,523){OM=12MAON=32NB{M=A/3=(56,563)N=3B/5=(3,0){L1=AN:y=53x+153L2=BM:y=35x+3P(3512,5312)¯OP=5136OAOP=|OA||OP|cosAOP17524+7524=55136cosAOPcosAOP=25024×62513=5213sinAOP=33926
解答
203C203=1140:455C43=20544C53=40=1322C33=2422C43=8=1322C33=2422C43=8=2322C33=2=2322C33=220+40+2+8+2+8+2+2=84=1841140=10561140=8895
解答F(x)=x0(xt)sin2tdt=x0xsin2tdtx0tsin2tdtF(x)=xx0xsin2tdtxsin2x=x[x22xsin(2x)4]xsin2x=xsin(2x)+2xcos(2x)4xsin2xF(π3)=π3(32π3)14π4=π638
解答
f(x)=2sinx+3cosx=13(213sinx+313cosx)=13sin(x+θ),{sinθ=3/13cosθ=2/13{f(0)=13sinθ=3f(π/2)=13sin(π/2+θ)=13cosθ=2f(x)=13,x+θ=π/2,0<x<π/2{y=f(x)y=k3k<13
解答k=11k(k+2)(k+3)=k=1(1k(k+2)1k(k+3))=k=1(12(1k1k+2)13(1k1k+3))=12k=1(1k1k+2)13k=1(1k1k+3)=12(1+12)13(1+12+13)=123213116=536
解答C204+C205=C215=C2116=21!5!16!=20349=C203491=C2034920348(n,k)=(21,5),(21,16),(20349,1),(20349,20348)
解答
(){43320.80843420.8320.80<s0.8323(0.67),34(0.75),45(0.8),56(0.833),57(0.71),67(0.857),78(0.875),79(0.777),89(0.888)911=0.81820911=22911
解答
5×6=302xyzw滿:{2+x+y+z+w=151x,y,z,w5x,y,z,wNx+y+z+w=9{x=x+1y=y+1z=z+1w=w+1H49x,y,z,w=6,7,8,9C41H44H49C41H44=80
解答|CPαAPβBP|=|(4αβ6,5α+2β5,2α2β+4)|f(α,β)=(4αβ6)2+(5α+2β5)2+(2α2β+4)2{fα=0fβ=0{5α2β+1=06α3β+4=0{α=5/4β=14/3αβ=3
解答

(){a+e=d+1f+b=d+1g+c=d+1ag{09}(a,e),(b,f),(c,g)d+1(d)(8,2),(7,3),(6,4)10(9)23×3!=48(9,0),(7,2),(6,3),(5,4)9(8)C43×23×3!=192(8,0),(6,2),(5,3)8(7)23×3!=48(7,0),(5,2),(4,3)7(6)23×3!=4848+192+48+48=336
解答sin(3x)sin3x+cos(3x)cos3x1+cos(4x)=sin2x(sin(3x)sinx)+cos2x(cos(3x)cosx)1+(2cos2(2x)1)=12sin2x(cos(2x)cos(4x))+12cos2x(cos(2x)+cos(4x))2cos2(2x)=cos(2x)(sin2x+cos2x)+cos(4x)(cos2xsin2x)4cos2(2x)=cos(2x)+cos(4x)cos(2x)4cos2(2x)=1+cos(4x)4cos(2x)=1+cos(4x)4cos(2x)+16cos(2x)=5+3cos(4x)12cos(2x)=5+3(2cos2(2x)1)12cos(2x)=2+6cos2(2x)12cos(2x)=16cos(2x)+cos(2x)2216cos(2x)cos(2x)2=2112=1333

解答{¯AB=c¯BC=a¯CA=b{6HAAB=6AHAB=6(b2+c2a2)/23HBBC=3BHBC=3(a2+c2b2)/24HCCA=4CHCA=4(a2+b2c2)/2:6HAAB=3HBBC=4HCCA3(b2+c2a2)=32(a2+c2b2)=2(a2+b2c2){3a23b2c2=05a2b25c2=0{a2=b2+c2/312b2=10c2cosA=b2+c2a22bc=2c2/32bc=c3b=1365=3015sinA=130225=19515

二、計算證明題:(每題 10 分,共 30 分)

解答{a1=a2=1a3=2an=1an3(an2an1+3)a4=1a1(a2a3+3)=(2+3)/1=5anan3=an2an1+3(1)an1an4=an3an2+3(2)(1)(2)anan3an1an4=an2an1an3an2anan3+an3an2=an2an1+an1an4an3(an+an2)=an1(an2+an4)an+an2an1=an2+an4an3=an4+an6an5=={a4a2a3=512=2na3a1a2=211=1nan,n1
解答Γ:x225+y216=12x25+yy8=0y=1625xyAΓA(5cosθ,4sinθ)L:y=16255cosθ4sinθ(x5cosθ)+4sinθL:4cosθx+5sinθy=20R=d(O,L)=2016cos2θ+25sin2θ400R2=16cos2θ+25sin2θ(1);¯OA2=25cos2θ+16sin2θ(2)(1)+(2)400R2+¯OA2=41¯AB2=¯OA2R2=(41400R2)R2=41(R2+400R2):R2+400R22R2400R2=40¯AB24140=1¯AB1R2=20R=20=25R=25¯AB1
解答
[3a(f(x))2+2bf(x)+c](f(x)x2)=0{f(x)x2=0(1)3a(f(x))2+2bf(x)+c=0(2)(1)f(x)=x2x1<y=f(x)=x2<x3{y=x2y=f(x)(2)3a(f(x))2+2bf(x)+c=06af(x)f(x)+2bf(x)=0f(x)(3af(x)+b)=0{f(x)=0x1,x2f(x)=b/3ax0f
 ==============================END===============================

解題僅供參考,其他教甄試題及詳解

沒有留言:

張貼留言