Processing math: 100%

2021年8月18日 星期三

110年新竹市香山高中教甄-數學詳解

新竹市立香山高級中學110學年度教師甄選

一、單選題

解答f(x)=11x=1+x+x2+x3+f(x)=1(1x)2=1+2x+3x2+4x3+f(12021)=1(11/2021)2=1+212021+3(12021)2+4(12021)3+1+212021+3(12021)2+4(12021)3+=(20212020)2(D)
解答log9a=log12b=log16(a+b)logalog9=logblog12=log(a+b)log16{log12loga=log9logblog16logb=log12log(a+b)(log12)(loga+log(a+b))=(log9+log16)logb(log3+log4)(loga+log(a+b))=2(log3+log4)logbloga+log(a+b)=2logba(a+b)=b2a+bb=ba1+ab=ba1+1x=x,where x=bax2x1=0x=1+52(E)
解答f(x)=3x011+t2dtf(x)=11+(3x)2(3x)=31+9x2f(1)=310(E)
解答limn(sinπnn+sin2πnn+sin3πnn++sinnπnn)=limnnk=11nsin(knπ)=10sinxπdx=[1πcosxπ]|10=1π+1π=2π(E)
解答f(x)=(1+x)n=1+Cn1x+Cn2x2++Cnnxnf(x)x=(1+x)nx=1x+Cn1+Cn2x+Cn3x2++Cnnxn1f(3)3=4n3=13+Cn1+3Cn2+32Cn3++3n1CnnCn1+3Cn2+32Cn3++3n1Cnn=4n313=4n13(A)
解答S(n)=f(1)+f(2)++f(n)f(n)=S(n)S(n1)=n2f(n)(n1)2f(n1)f(n)=(n1)2n21f(n1)=n1n+1f(n1)=n1n+1n2nf(n2)=n1n+1n2nn3n1f(n3)==n1n+1n2nn3n113f(1)=(n1)!(n+1)!/2f(1)=2(n+1)n2021f(2021)=2202220212021=11011(B)
解答p=q=2{2+2=222+7×2=42p2+q2=8(A)
解答{sinx+siny=2/2cosx+cosy=6/2{2sinx+y2cosxy2=2/22cosx+y2cosxy2=6/2{sinx+y2cosxy2=2/4cosx+y2cosxy2=6/4tanx+y2=26=33tan(x+y)=23/311/3=3sin(x+y)=32(E)
解答S=z+2z2+3z3++36z36zS=z2+2z3+3z4++36z37SzS=z+z2++z3636z37(1z)S=z(1+z++z35)36z37=z1z361z36z37S=z(1z36)(1z)236z371z(1)z=cos10+isin10z36=1(1)S=36z1z|S|1=136|1z||z|=136|1z|=136|1cos10+isin10|=136(1+cos10)2+sin210=118sin5(C)
解答{α=abβ=bcγ=ca{α+β+γ=03α+3β+γ=0{γ=(α+β)α+β=3α+3ββ=132α(ab)(ac)(bc)2=αγβ2=α(α+β)(132)2α2=332α24234α2=3323=(33)(2+3)(23)(2+3)=3+3(D)
解答x2(y1)2=12x2(y1)y=0y=xy1L:y=mxP(t,mt){Pm=y(P){t2(mt1)2=1(1)m=t/(mt1)(2)(2)t=mm21(1)1m21=1m=2(m>0)t=2P(2,2)=(a,b)sin1ab=sin112=π4(B)
解答
{C(0,0)¯BC=6{P(2,0)L1=AC:y=xL2=AB:y=6+262(x6)A=L1L2=(3+3,3+3)¯AQ¯BCQxQ(3+3,0){¯AQ=3+3¯PQ=1+3¯AQ¯PQ=3+31+3=3APB=60(B)
解答n>1n2n1+1n2n1+1=(2k1)2,kNn2n1=(2k1)21=(2k2)2k=22k(k1)n2n3=k(k1)n2n3=2n32nn,2n3n62n3>n{k=2n3k1=nk>k11n5n=5n2n1+1=81=92(A)
解答f(2x)=3f(x)f(x)=13f(2x)10f(x)dx=1013f(2x)dx=1(1)u=2x,du=2dx(1)2016f(u)du=120f(u)du=620f(x)dx=610f(x)dx+21f(x)dx=61+21f(x)dx=621f(x)dx=5(C)
解答{¯AD=hBAD=θ1DAC=θ2{tanθ1=3/htanθ2=17/htan(θ1+θ2)=tanBAC=tanθ1+tanθ21tanθ1tanθ2227=20/h151/h2=20hh25111h270h561=0(11h+51)(h11)=0h=11ABC=12¯BCh=122011=110(A)

二、多選題

解答(A):2,22,23,24,25,2,4,8,6,2,42021=4×505+12202122202111(B)×:17n7,9,3,1,7,4110=4×27+217110917110+326(C)×:log202112log202013log201914log212021=log2log2021log3log2020log2021log2=(1)2020log2021log2020log2log2021log2020log2=11(D):7=1+6=6+1=2+5=5+2=3+4=4+366/36=1/6(E)×:{sinx1+x2sinx1+x2ππsinx1+x2dx=0(AD)
解答(A)×:{an=1,1,0,0,bn=1,1,1,1,{an=0bn=(B)×:{1/n1/n2=π2/6(D)×:1nn+1+(n+1)n=(n+1)nnn+1(nn+1+(n+1)n)((n+1)nnn+1)=(n+1)nnn+1n(n+1)=nnn+1n+1=1n1n+1n=1(1n1n+1)=12(CE)
解答(B)×:A=IAB=BAB(E)×:(A+B)(AB)=A2AB+BAB2A2B2(AB=BA)(ACD)
解答asinA=2R=2abcb+csinA=b+c2bccos2A=1sin2A=1(b+c)24bc=(bc)24bc0b=csinA=b+b2b2=1A=90asinA=a=2R(BCE)
解答(A)×:(B):(C)×:ba|f(x)|dx>0(D):|baf(x)dx|=|0|=0(E):{f(x)=xa=2b=2c=1{baf(x)dx=0caf(x)dx<0(BD)

============= END ================

解題僅供參考,其他教甄試題及詳解

沒有留言:

張貼留言