國立臺灣海洋大學106學年度轉學生入學招生考試
考試科目:微積分
解答:(a)f(x)=sinxx⇒f′(x)=cosxx−sinxx2⇒limx→π/2f′(x)=0−4π2=−4π2(b)L=limx→0+xln31+lnx⇒lnL=limx→0+ln31+lnxlnx=ln3limx→0+lnx1+lnx=ln3limx→0+1/x1/x=ln3⇒L=3
解答:(a)f(t)=√3t+2t⇒f′(t)=32t√3t+2−√3t+2t2=3t−2(3t+2)2t2√3t+2=−3t−42t2√3t+2(b)y=(sinx)x=exln(sinx)⇒y′=(ln(sinx)+xcosxsinx)exln(sinx)=(ln(sinx)+xcosxsinx)(sinx)x=(sinx)xln(sinx)+xcosx(sinx)x−1(c)g(x)=sin3(cosx)⇒g′(x)=3sin2(cosx)⋅cos(cosx)⋅(−sinx)=−3sinxcos(cosx)sin2(cosx)
解答:3exy−x=0⇒3(y+xy′)exy−1=0,將{x=3y=0代入⇒9y′−1=0⇒y′=19⇒切線方程式:y=19(x−3)⇒x−9y=3
解答:(a)f(x)=ln(e√2x+1)⇒f(4)=ln(e√9)=3(b)tanθ=37⇒sinθ=sin(tan−137)=3√58=3√5858
解答:外直徑12英尺相當於半徑6英尺,殼厚0.3英吋=0.3÷12=0.025英尺⇒dr=−0.025球體積V=43πr3⇒dV=4πr2dr=4π62⋅(−0.025)=−3.6π,而V(r=6)=43π63=288π⇒體積近似值=288π−3.6π=284.4π
解答:(a)f(x,y)=x2y3−4y2⇒∇f(x,y)=(fx,fy)=(2xy3,3x2y2−8y)(b)z=f(x,y)⇒dz=fx⋅dx+fy⋅dy=2xy3dx+(3x2y2−8y)dy(c)Duf(1,2)=∇f(1,2)⋅→u|→u|=(16,−4)⋅(35,−45)=645
解答:(a)∫10∫y0xy2dxdy=∫10[12x2y2]|y0dy=∫1012y4dy=110y5|10=110(b)∬RyexdA=∫40∫(12−y)/2yyexdxdy=∫40ye(12−y)/2−yeydy=[−2(y+2)e(12−y)/2−(y−1)ey]|40=−15e4−(−4e6+1)=4e6−15e4−1(c)∫10∫1xey2dydx=∫10∫y0ey2dxdy=∫10yey2dy=[12ey2]|10=12(e−1)
解答:∫x3e−2xdx=−12x3e−2x+32∫x2e−2xdx=−12x3e−2x−34x2e−2x+32∫xe−2xdx=−12x3e−2x−34x2e−2x−34xe−2x−38e−2x+C⇒∫∞0x3e−2xdx=0−(−38)=38
解答:x2−y2−z2=1⇒x2=y2+z2+1⇒與原點距離的平方=x2+y2+z2=f(y,z)=(y2+z2+1)+y2+z2=2y2+2z2+1與原點最近相當於求f(y,z)的最小值;由於{fy=4y=0fz=4z=0⇒{y=0z=0⇒x2=1⇒x=±1⇒與原點最近的點(±1,0,0)
解答:
令{u=x+yv=y−x⇒{x=(u−v)/2y=(u+v)/2⇒∂(x,y)∂(u,v)=|1/2−1/21/21/2|=12⇒∬R(x−yx+y)4dA=∫u=2u=1∫v=uv=−u(vu)4⋅12dvdu=∫21[110u4v5]|u−udu=∫2115udu=[110u2]|21=310
==================== END ====================
解題僅供參考,其他轉學考歷屆試題及詳解
沒有留言:
張貼留言