國立臺北大學107學年度日間學士班暨進修學士班轉學生招生考試
科目:微積分

解答:1.{u=tan−1xdv=dx⇒{du=11+x2dxv=x⇒∫tan−1xdx=xtan−1x−∫x1+x2dx=xtan−1x−12ln(1+x2)+C2.I=∫b0∫√a2−a2y2/b201dxdy=∫b0√a2−a2y2b2dy=∫b0a√1−(yb)2dy取y=bsinθ⇒dy=bcosθdθ⇒I=∫π/20abcos2θdθ=[ab4sin(2θ)+ab2θ]|π/20=ab4π⇒欲求之面積=4I=abπ3.{u=lnxdv=dx⇒{du=1xdxv=x⇒∫lnxdx=xlnx−∫1dx=xlnx−x⇒∫10lnx=[xlnx−x]|10=−14.∫211xdx=2−16(11+4⋅1(1+2)/2+12)=16(1+83+12)=2536
解答:
1.假設|(3x−1)−5|=3|x−2|<ε⇒|x−2|<ε3因此取δ=ε3,則∀x滿足|x−2|<δ,可以得到|(3x−1)−5|<ε,因此limx→2(3x−1)=5,故得證2.f(x)=√4−x2⇒f(c)=√4−c2,其中c,x∈[−2,2]⇒|f(c)−f(x)|=|√4−c2−√4−x2|≤√|c2−x2|≤√|x−c|⋅√|x|+|c|≤2√|x−c|,因此令2√|x−c|=ε⇒|x−c|=ε24所以取δ<ε24⇒|x−c|<δ⇒|f(x)−f(c)|<ε⇒f(x)在區間[−2,2]連續,故得證3.limh→0f(x+h)−f(x)h=limh→0(x+h)2−(x+h)+1−x2+x−1h=limh→02hx+h2−hh=limh→0(2x−1+h)=2x−1⇒f(x)可微,∀x∈R,故得證4.均值定理f′(c)=f(100)−f(0)100−0=f(100)≥6⇒f(100)最小值為65.x4+y4=8xy2⇒4x3+4y3y′=8y2+16xyy′⇒(4y3−16xy)y′=8y2−4x3⇒y′=8y2−4x34y3−16xy=2y2−x3y(y2−4x)6.y=cos(xcosx)⇒y′=−sin(xcosx)⋅(cosx−xsinx)=(xsinx−cosx)sin(xcosx)7.y=xx+ax⇒y′=1x+ax−x(x+ax)2(1−ax2)=2ax(x+ax)2
=============== END ===================
沒有留言:
張貼留言