臺灣綜合大學系統107學年度學士班轉學生聯合招生考試
科目名稱:工程數學
類組代碼:D09
解答:$$\mathbf{(a)}\;A=\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0\\ 0 & 0 & 1\end{bmatrix} \Rightarrow \det(A-\lambda I)=0 \Rightarrow \begin{vmatrix} -\lambda & 1 & 0 \\ 1 & -\lambda & 0\\ 0 & 0 & 1-\lambda\end{vmatrix} = -(\lambda-1)^2(\lambda+1)=0\\ \quad\Rightarrow A的特徵值=\bbox[red,2pt]{1,-1} \\\mathbf{(b)}\; \lambda_1=1 \Rightarrow (A-\lambda_1 I)X=0 \Rightarrow \begin{bmatrix} -1 & 1 & 0 \\ 1 & -1 & 0\\ 0 & 0 & 0\end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3\end{bmatrix} =0 \Rightarrow x_1=x_2 \\ \quad \Rightarrow 取v_1=\begin{bmatrix} 1/\sqrt 2 \\ 1/\sqrt 2 \\ 0\end{bmatrix},v_2=\begin{bmatrix} 0\\ 0 \\ 1\end{bmatrix} \\ \lambda_2=-1\Rightarrow (A-\lambda_2 I)X=0 \Rightarrow \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0\\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3\end{bmatrix} =0 \Rightarrow \cases{x_1=-x_2\\ x_3=0} \\ \qquad \Rightarrow 取v_3=\begin{bmatrix} 1/\sqrt 2 \\ -1/\sqrt 2 \\ 0\end{bmatrix} \\ 因此單範正交特徵向量\text{(orthonormal eigen vector)}為\bbox[red,2pt]{\begin{bmatrix} 1/\sqrt 2 \\ 1/\sqrt 2 \\ 0\end{bmatrix}, \begin{bmatrix} 0\\ 0 \\ 1\end{bmatrix} ,\begin{bmatrix} 1/\sqrt 2 \\ -1/\sqrt 2 \\ 0\end{bmatrix}}\\ \mathbf{(c)}\;A=\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0\\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & 1\\ 0 & 1 & 0\end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0\\ 0 & 0 & -1\end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & 1\\ 0 & 1 & 0\end{bmatrix} ^{-1}=P\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0\\ 0 & 0 & -1\end{bmatrix} P^{-1} \\ \Rightarrow \sin(A)= P\begin{bmatrix} \sin(1) & 0 & 0 \\ 0 & \sin(1) & 0\\ 0 & 0 & -\sin(1)\end{bmatrix} P^{-1} \\ \Rightarrow \sin(A^3) = P\begin{bmatrix} \sin^3(1) & 0 & 0 \\ 0 & \sin^3(1) & 0\\ 0 & 0 & -\sin^3(1)\end{bmatrix} P^{-1} \\ \Rightarrow \sin(3A)= 3\sin(A)-4\sin^3(A) \\=P \begin{bmatrix} 3\sin(1)-4\sin^3(1) & 0 & 0 \\ 0 & 3\sin(1)-4\sin^3(1) & 0\\ 0 & 0 & -3\sin(1)+4\sin^3(1) \end{bmatrix} P^{-1}\\=\begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & 1\\ 0 & 1 & 0\end{bmatrix} \begin{bmatrix} 3\sin(1)-4\sin^3(1) & 0 & 0 \\ 0 & 3\sin(1)-4\sin^3(1) & 0\\ 0 & 0 & -3\sin(1)+4\sin^3(1) \end{bmatrix} \begin{bmatrix} 1/2 & 1/2 & 0 \\ 0 & 0 & 1\\ -1/2 & 1/2 & 0\end{bmatrix} \\ =\begin{bmatrix} 3\sin(1)-4\sin^3(1) & 0 & 3\sin(1)-4\sin^3(1) \\ 3\sin(1)-4\sin^3(1) & 0 & -3\sin(1)+4\sin^3(1)\\ 0 & 3\sin(1)-4\sin^3(1) & 0 \end{bmatrix} \begin{bmatrix} 1/2 & 1/2 & 0 \\ 0 & 0 & 1\\ -1/2 & 1/2 & 0\end{bmatrix} \\ = \bbox[red,2pt]{\begin{bmatrix} 0 & 6\sin(1)-8\sin^3(1) & 0 \\ 6\sin(1)-8\sin^3(1) & 0 & 0\\ 0 & 0 & 3\sin(1) -4\sin^3(1)\end{bmatrix}}$$
解答:$$\iint_R(2x-3x^2)dA = \int_{-1}^1 \int_0^1 (2x-3x^2)\,dydx = \int_{-1}^1 (2x-3x^2)\,dx = \left.\left[ x^2-x^3 \right]\right|_{-1}^1 =-2\\ \cases{C_1=\{(2t-1,0)\mid t\in[0,1]\} \\ C_2=\{(1,t)\mid t\in [0.1]\} \\ C_3=\{(-2t+1,1)\mid t\in[0,1] \} \\ C_3=\{(-1,1-t)\mid t\in[0,1]\}} \Rightarrow \oint_C 3x^2ydx +(x^2-5y)dy =\oint_{C_1} 3x^2ydx +(x^2-5y)dy \\+ \oint_{C_2} 3x^2ydx +(x^2-5y)dy + \oint_{C_3} 3x^2ydx +(x^2-5y)dy+ \oint_{C_4} 3x^2ydx +(x^2-5y)dy \\=0 +\int_0^1(1-5t)dt +\int_0^1 -6(-2t+1)^2\,dt +\int_0^1 5(1-t)-1\,dt \\=\int_0^1 -24t^2+14t-1\,dt =\left.\left[ -8t^3+7t^2-t \right]\right|_0^1 =-2 \\ 因此左式=右式=-2,\bbox[red,2pt]{故得證}$$
沒有留言:
張貼留言