臺灣綜合大學系統107學年度學士班轉學生聯合招生考試
科目名稱:工程數學
類組代碼:D09


解答:(a)A=[010100001]⇒det(A−λI)=0⇒|−λ101−λ0001−λ|=−(λ−1)2(λ+1)=0⇒A的特徵值=1,−1(b)λ1=1⇒(A−λ1I)X=0⇒[−1101−10000][x1x2x3]=0⇒x1=x2⇒取v1=[1/√21/√20],v2=[001]λ2=−1⇒(A−λ2I)X=0⇒[110110002][x1x2x3]=0⇒{x1=−x2x3=0⇒取v3=[1/√2−1/√20]因此單範正交特徵向量(orthonormal eigen vector)為[1/√21/√20],[001],[1/√2−1/√20](c)A=[010100001]=[10−1101010][10001000−1][10−1101010]−1=P[10001000−1]P−1⇒sin(A)=P[sin(1)000sin(1)000−sin(1)]P−1⇒sin(A3)=P[sin3(1)000sin3(1)000−sin3(1)]P−1⇒sin(3A)=3sin(A)−4sin3(A)=P[3sin(1)−4sin3(1)0003sin(1)−4sin3(1)000−3sin(1)+4sin3(1)]P−1=[10−1101010][3sin(1)−4sin3(1)0003sin(1)−4sin3(1)000−3sin(1)+4sin3(1)][1/21/20001−1/21/20]=[3sin(1)−4sin3(1)03sin(1)−4sin3(1)3sin(1)−4sin3(1)0−3sin(1)+4sin3(1)03sin(1)−4sin3(1)0][1/21/20001−1/21/20]=[06sin(1)−8sin3(1)06sin(1)−8sin3(1)00003sin(1)−4sin3(1)]

解答:∬R(2x−3x2)dA=∫1−1∫10(2x−3x2)dydx=∫1−1(2x−3x2)dx=[x2−x3]|1−1=−2{C1={(2t−1,0)∣t∈[0,1]}C2={(1,t)∣t∈[0.1]}C3={(−2t+1,1)∣t∈[0,1]}C3={(−1,1−t)∣t∈[0,1]}⇒∮C3x2ydx+(x2−5y)dy=∮C13x2ydx+(x2−5y)dy+∮C23x2ydx+(x2−5y)dy+∮C33x2ydx+(x2−5y)dy+∮C43x2ydx+(x2−5y)dy=0+∫10(1−5t)dt+∫10−6(−2t+1)2dt+∫105(1−t)−1dt=∫10−24t2+14t−1dt=[−8t3+7t2−t]|10=−2因此左式=右式=-2,故得證
沒有留言:
張貼留言