111 年特種考試地方政府公務人員考試試題
等 別: 三等考試
類 科: 電力工程、 電子工程
科 目: 工程數學
甲、 申論題部分: ( 50分)
解答:$$\mathbf{(一)}\;積分因子I(x)=e^{\int (3/x)\,dx} =e^{3\ln x} =\bbox[red, 2pt]{x^3}\\ \mathbf{(二)}\;I(x)y'+I(x){3y\over x}=xI(x) \Rightarrow x^3y' +3x^2y = x^4 \Rightarrow (x^3y)'=x^4 \Rightarrow x^3y =\int x^4\,dx ={1\over 5}x^5+ C\\\qquad 將y(1)=3代入上式\Rightarrow 3={1\over 5}+C \Rightarrow C={14\over 5} \Rightarrow x^3y = {1\over 5}x^5 +{14\over 5} \Rightarrow \bbox[red, 2pt]{y={1\over 5}x^2 +{14\over 5}x^{-3}}$$
解答:$$\lambda_1=2 \Rightarrow (A-\lambda_1 I)\mathbf x=0 \Rightarrow x_1+x_3=0 \Rightarrow 特徵向量v_1=(t,0,-t)^t,v_2= (0,s,0)^t,s,t\in \mathbb R\\ \lambda_2=1 \Rightarrow (A-\lambda_2 I)\mathbf x=0 \Rightarrow \cases{x_1+2x_3=0 \\ x_1+x_2+x_3=0 }\Rightarrow 特徵向量v_3=(-2t,t,t)^t,t\in \mathbb R\\ 若\mathbf x為A之特徵向量 \Rightarrow A\mathbf x= \lambda \mathbf x \Rightarrow A^8\mathbf x= B\mathbf x= \lambda^8 \mathbf x \Rightarrow \mathbf x 為B之特徵向量\\ \Rightarrow A與B有相同的特徵向量,其一般式為\bbox[red,2pt]{\begin{bmatrix}t\\ 0\\ -t \end{bmatrix}, \begin{bmatrix}0\\ s\\ 0 \end{bmatrix},\begin{bmatrix}-2r\\ r\\ r \end{bmatrix},r,s,t\in \mathbb R}$$
解答:$$\mathbf{(一)}\;與靶心相同距離(r)有相同的機率,且機率與面積成正比,因此f_X(X=r) 與周長 2\pi r成正比\\ 因此假設f_X(X=x)=(2\pi x)\cdot k ,再由\int f_X\,dx =1 \Rightarrow k={1\over \pi} \Rightarrow \bbox[red, 2pt]{f_X(x) = 2x, 0\le x\le 1}\\ \mathbf{(二)}\;$$
解答:$$\mathbf{(一)}\;f(z)={1\over z^2+4} ={1\over (z-2i)(z+2i)} \Rightarrow \oint_{C_1} f(z)\,dz =2\pi i(\text{Res }f(2i)+ \text{Res }f(-2i)) \\\qquad =2\pi i({1\over 4i}+ {1\over -4i})=\bbox[red, 2pt]0\\ \mathbf{(二)}\;\oint_{C_2} f(z)\,dz = 2\pi i\times \text{Res }f(2i)= 2\pi i\times {1\over 4i} =\bbox[red, 2pt]{\pi \over 2}$$
乙、 測驗題部分: (50分)
解答:$$(1,-1,3)\times (2,0,-4)=(4,10,2)= (a,b,c) \Rightarrow a\times b\times c=80,故選\bbox[red,2pt]{(B)}$$解答:$$A\mathbf x=b \equiv \begin{bmatrix} 1& 2 \\ 2& 4\\ 3 & 6\end{bmatrix} \begin{bmatrix} x_1\\ x_2\end{bmatrix}=\begin{bmatrix} 10\\ 20\\ 30\end{bmatrix} \Rightarrow x_1+2x_2= 10有無窮多解,故選\bbox[red,2pt]{(C)}$$
解答:$$\cases{\vec u=(1,3,2)\\ \vec v=(0,-1,4)} \Rightarrow \cos \phi = {\vec u\cdot \vec v\over |\vec u||\vec v|} ={0-3+8 \over \sqrt{14} \cdot \sqrt{17}} ={5\over \sqrt{238}} \Rightarrow \sin^2 \phi =1-\cos^2 \phi = 1-{25\over 238}\\ ={213\over 238} \approx 0.894,故選\bbox[red,2pt]{(A)}$$
解答:$$(3,1,\alpha)=a(1,2,3)+b(1,0,-1)= (a+b,2a,3a-b) \Rightarrow \cases{a+b=3\\ 2a=1\\ 3a-b=\alpha} \\ \Rightarrow \cases{a=1/2\\ b=5/2} \Rightarrow \alpha = {3\over 2}-{5\over 2}=-1,故選\bbox[red,2pt]{(C)}$$
解答:$$\det(A)=7 \ne 0,故選\bbox[red,2pt]{(A)}$$
解答:$$令A=\begin{bmatrix} 2 & -3 &1 \\ 1 & -2 & 1\\ 1 & -3 & 2\end{bmatrix},則\\(A)\times: A \begin{bmatrix} 0 \\1 \\ 1 \end{bmatrix}= \begin{bmatrix} -2 \\-1 \\ -1 \end{bmatrix} \ne \lambda \begin{bmatrix} 0 \\1 \\ 1 \end{bmatrix} ,\forall \lambda \in \mathbb{R}\\(B)\times: A \begin{bmatrix} 1 \\0 \\ 1 \end{bmatrix}= \begin{bmatrix} 3 \\2 \\ 3 \end{bmatrix} \ne \lambda \begin{bmatrix} 1 \\0 \\ 1 \end{bmatrix} ,\forall \lambda \in \mathbb{R}\\(C)\times: A \begin{bmatrix} 0 \\0 \\ 1 \end{bmatrix}= \begin{bmatrix} 1 \\1 \\ 2 \end{bmatrix} \ne \lambda \begin{bmatrix} 0 \\0 \\ 1 \end{bmatrix} ,\forall \lambda \in \mathbb{R} \\(D)\bigcirc: A \begin{bmatrix} -1 \\0 \\ 1 \end{bmatrix}= \begin{bmatrix} -1 \\0 \\ 1 \end{bmatrix} = 1\begin{bmatrix} 1 \\0 \\ 1 \end{bmatrix}\\,故選\bbox[red,2pt]{(D)}$$
解答:$$ A=\begin{bmatrix}0.8 & 0.3 \\0.2 & 0.7\end{bmatrix} =\begin{bmatrix}-1 & 3/2 \\1 & 1 \end{bmatrix}\begin{bmatrix}1/2 & 0 \\0 & 1\end{bmatrix} \begin{bmatrix}-0.4 & 0.6 \\0.4 & 0.4 \end{bmatrix} \\ \Rightarrow A^n=\begin{bmatrix}0.8 & 0.3 \\0.2 & 0.7\end{bmatrix} =\begin{bmatrix}-1 & 3/2 \\1 & 1 \end{bmatrix}\begin{bmatrix}(1/2)^n & 0 \\0 & 1^n\end{bmatrix} \begin{bmatrix}-0.4 & 0.6 \\0.4 & 0.4 \end{bmatrix} \\ \Rightarrow \lim_{n\to \infty}A^n =\begin{bmatrix}0.8 & 0.3 \\0.2 & 0.7\end{bmatrix} =\begin{bmatrix}-1 & 3/2 \\1 & 1 \end{bmatrix}\begin{bmatrix}0 & 0 \\0 & 1\end{bmatrix} \begin{bmatrix}-0.4 & 0.6 \\0.4 & 0.4 \end{bmatrix}= \begin{bmatrix}0.6 & 0.6 \\0.4 & 0.4\end{bmatrix}\\ \Rightarrow \lim_{x\to \infty} x(k)= \begin{bmatrix}0.6 & 0.6 \\0.4 & 0.4\end{bmatrix}\begin{bmatrix} 100 \\0 \end{bmatrix} =\begin{bmatrix} 60 \\40 \end{bmatrix},故選\bbox[red,2pt]{(C)}$$
解答:$$\bar z={1\over z} \Rightarrow z=0不可解析,故選\bbox[red,2pt]{(D)}$$
解答:$$Res f(0)=5-2i \Rightarrow \cases{a=5\\ b=-2} \Rightarrow a+b=3,故選\bbox[red,2pt]{(C)}$$
解答:$$z=x+iy = t+it^2 \Rightarrow dz=(1+2it)dt \Rightarrow \int_\Gamma z^2dz = \int_0^1 (t+it)^2(1+2it)dt \\=\int_0^1 (-4t^3+2t^2 i)dt =\left.\left[ -t^4+{2\over 3}t^3i \right] \right|_0^1 =-1+{2\over 3}i \Rightarrow \cases{a=-1\\ b=2/3} \Rightarrow ab=-2/3,故選\bbox[red,2pt]{(B)}$$
解答:$$令f(s)= s^2-s+2\Rightarrow f'(s)= 2s-1 \Rightarrow g(1)=\int_C{f(s) \over (s-1)^2}\,ds =2\pi i\times f'(1) = 2\pi i\\,故選\bbox[red,2pt]{(A)}$$
解答:$$f(x,y)=x^2\sin(xy) \Rightarrow \nabla f=(f_x,f_y)= (2x\sin(xy)+x^2y\cos(xy),x^3\cos(xy))\\ \Rightarrow \nabla f(1,\pi)= (2\sin \pi+\pi\cos(\pi),\cos (\pi)) =(-\pi,-1),故選\bbox[red,2pt]{(C)}$$
解答:$$先求齊次解,即y''+y'+y=0 \Rightarrow r^2+r+1=0 \Rightarrow r=-{1\over 2}\pm {\sqrt 3 \over 2}i \\ \Rightarrow y_h =e^{t/2}(C_1 \cos({\sqrt 3\over 2}t)+C_2\sin({\sqrt 3\over 2}t)),又y_p亦為三角函數之線性組合,故選\bbox[red,2pt]{(D)}$$
解答:$$y=a_0 +a_1x+ a_2x^2 +\cdots \Rightarrow y'=a_1+ 2a_2x +3a_3x^2+4a_4x^3 +\cdots\\ \Rightarrow y'' = 2a_2 + 6a_3x+ 12a_4x^2 + \cdots\\ 將x=0代入 y''+xy'+e^xy = x^2+1\Rightarrow y''(0)+ 2=1 \Rightarrow y''(0)=-1=2a_2 \Rightarrow a_2=-{1\over 2}\\,故選\bbox[red,2pt]{(B)}$$
解答:$$假設f(t)=g(t)=1, \Rightarrow \cases{L\{f\}=L\{g\}=1/s \\ L\{fg\} = 1/s} \Rightarrow L\{fg\} \ne {1\over s^2},故選\bbox[red,2pt]{(C)}$$
解答:$$f(t)=\begin{cases} 1,& 0\le t\le 2\\ 0,& \text{otherwise}\end{cases} \Rightarrow F(f(t))=F(\omega)=\int_0^2 e^{-j\omega t}\,dt =-{1\over j\omega }(e^{-2j\omega}-1) \\=-{1\over j\omega }e^{-j\omega}(e^{-j\omega}-e^{j\omega}) =-{1\over j\omega }e^{-j\omega}(-2j\sin \omega) =2e^{-j\omega}{\sin \omega\over \omega},故選\bbox[red,2pt]{(A)}$$
解答:$$f(x)=\begin{cases}1-x,& 0\le x\le 1\\ 1+x,&-1 \le x\le 0 \end{cases} \Rightarrow \cases{E(X)=0\\ E(X^2)=\int_{-1}^0 x^2(1+x)\,dx +\int_0^1 x^2(1-x)\,dx = 1/6} \\ \Rightarrow Var(X)=E(X^2)-(E(X))^2 = {1\over 6},故選\bbox[red,2pt]{(C)}$$
解答:$$\iint f_{XY}\,dxdy=1 \Rightarrow \int_0^1 \int_0^1 Axy^2\,dxdy = \int_0^1 {1\over 2}Ay^2\,dy ={1\over 6}A=1 \Rightarrow A=6\\ \Rightarrow f_X(x)= \int_0^1 6xy^2\,dy = 2x \Rightarrow E(X)= \int_0^1 2x^2\,dx = {2\over 3},故選\bbox[red,2pt]{(B)}$$
解答:$$假設正面出現k次\Rightarrow \cases{P(k=5)=0.4^5\\ P(k=4)=C^5_1\cdot 0.6\cdot 0.4^4\\ P(k=3)=C^5_2\cdot 0.6^2\cdot 0.4^3} \Rightarrow \sum_{i=3}^5 P(k=i) =0.4^3(0.16+ 1.2+ 3.6)\\ =0.064\times 4.96 \approx 0.317,故選\bbox[red,2pt]{(C)}$$
解答:$$i^{2i} =e^{2i\ln i} =e^{2i\ln e^{\pi i/2 }} = e^{2i\cdot {\pi i\over 2}} =e^{-\pi},故選\bbox[red,2pt]{(D)}$$
======================== END =====================================
考選部未公布申論題答案,解題僅供參考
沒有留言:
張貼留言