臺灣綜合大學系統107學年度學士班轉學生聯合招生考試
科目名稱:微積分C
解答:f(x)=lnx3√x⇒f′(x)=x−4/3(1−13lnx)=0⇒x=e3(x≠0)⇒極大值f(e3)=3e
解答:limx→0sin(2tan−1x)−tan(sin−12x)x3=limx→02x1+x2−2x√1−4x2x3=limx→0(2x2(1+x2)−2x2√1−4x2)由於{11+x2=1−x2+x4−x6+⋯⇒2x2(1+x2)=2x2−2+2x2−2x4+⋯1√1−4x2=1+2x2+6x4+⋯⇒2x2√1−4x2=2=x2+4+12x2+⋯⇒limx→0(2x2(1+x2)−2x2√1−4x2)=limx→0(−6−10x2+⋯)=−6
解答:令y=limn→∞1nn√(n+1)(n+3)⋯(3n−1)y=limn→∞n√(1+1n)(1+3n)⋯(1+2n−1n)⇒lny=limn→∞1n(ln(1+1n)+ln(1+3n)+⋯+ln(1+2n−1n))=limn→∞n∑k=11nln(1+2k−1n)=limn→∞(2n∑k=112ln(1+kn)−n∑k=112ln(1+2kn))=∫2012ln(1+x)dx−∫1012ln(1+2x)dx=12([(x+1)ln(x+1)−x]|20−[(x+12)ln(1+2x)−x]|10)=12(3ln3−2−(32ln3−1))=ln33/4√e⇒y=33/4√e
解答:令√2tanu=x⇒√2sec2udu=dx⇒∫1(x2+2)5/2dx=∫√2sec2u(2tan2u+2)5/2du=∫√2sec2u(2sec2u)5/2du=∫14sec3udu=14∫cos3udu=14(34sinu+112sin(3u))+C=316sinu+148sin(3u)+C=316sinu+148(3sin(u)−4sin3u)+C=14sinu−112sin3u+C=14⋅x√x2+2−112⋅x3(x2+2)3/2+C=x(x2+3)6(x2+2)3/2+C
解答:11+x=1−x+x2−x3+x4−⋯⇒∫11+xdx=ln(1+x)=x−12x2+13x3−14x4+15x5−⋯⇒ln(1+x)x=1−12x+13x2−14x3+15x4−⋯⇒∫10ln(1+x)xdx=[x−122x2+132x3−142x4+⋯]|10=1−122+132−142+152−⋯令{S=∑∞n=11n2=1+122+132+⋯=π26Sodd=1+132+152+172+⋯Seven=122+142+162+⋯⇒Sodd=S−Seven=S−122(1+122+132+⋯)=S−14S=34S=π28⇒Seven=S−Sodd=S−π28=π224⇒∫10ln(1+x)xdx=Sodd−Seven=π28−π224=π212
面積=12∫2π0r2dθ=12∫2π0(32+sinθ)2dθ=12⋅4√3π=2√3π
解答:將(2,1)代入F(x,y,z)=2+z3+2z−5=0⇒z=1又F(x,y,z)=xy+z3+xyz−5⇒dF=(y+yz)dx+(x+xz)dy+(3z2+xy)dz再將{dx=1.97−2=−0.03dy=1.04−1=0.04代入dF(2,1,1)=2⋅(−0.03)+4⋅0.04+5dz=0⇒dz=−0.02⇒f(1.97,2.04)=1−0.02=0.98
解答:令{u=x2+y2v=y2−x2⇒|∂(u,v)∂(x,y)|=|uxuyvxvy|=|2x2y−2x2y|=8xy⇒|∂(x,y)∂(u,v)|=18xy⇒∬
解答:令\cases{M(x,y)=(x-y)/(x^2+y^2)\\ N(x,y)= (x+y)/(x^2+y^2} \Rightarrow M_y=N_x= (-x^2-2xy+ y^2)/(x^2+y^2)^2\\ 令\Phi(x,y) = \int M\,dx= \int N\,dy = {1\over 2}\ln(x^2+y^2)+ \tan^{-1}(y/x)+C\\ 又\cases{A=r(0)= (2,1)\\ B= r(1)= (1,3)},則 \int_C Mdx +Ndy = \Phi(B)-\Phi(A) \\= {1\over 2}\ln 10+\tan^{-1}3 -({1\over 2} \ln 5+\tan^{-1}(1/2)) \\= \bbox[red, 2pt]{\ln \sqrt 2+ \tan^{-1}3-\tan^{-1}(1/2)}
解答:令{u=x2+y2v=y2−x2⇒|∂(u,v)∂(x,y)|=|uxuyvxvy|=|2x2y−2x2y|=8xy⇒|∂(x,y)∂(u,v)|=18xy⇒∬
解答:令\cases{M(x,y)=(x-y)/(x^2+y^2)\\ N(x,y)= (x+y)/(x^2+y^2} \Rightarrow M_y=N_x= (-x^2-2xy+ y^2)/(x^2+y^2)^2\\ 令\Phi(x,y) = \int M\,dx= \int N\,dy = {1\over 2}\ln(x^2+y^2)+ \tan^{-1}(y/x)+C\\ 又\cases{A=r(0)= (2,1)\\ B= r(1)= (1,3)},則 \int_C Mdx +Ndy = \Phi(B)-\Phi(A) \\= {1\over 2}\ln 10+\tan^{-1}3 -({1\over 2} \ln 5+\tan^{-1}(1/2)) \\= \bbox[red, 2pt]{\ln \sqrt 2+ \tan^{-1}3-\tan^{-1}(1/2)}
==================== END ====================
解題僅供參考,其他轉學考歷屆試題及詳解
沒有留言:
張貼留言