Loading [MathJax]/jax/element/mml/optable/MathOperators.js

2022年12月3日 星期六

107年台綜大轉學考-微積分C詳解

臺灣綜合大學系統107學年度學士班轉學生聯合招生考試

科目名稱:微積分C

解答f(x)=x9+exln5+lnxln2+ln7lnxf(x)=9x8+ln5exln5+1xln2ln7x(lnx)2=9x8+5xln5+1xln21xlnxlogx7
解答f(x)=lnx3xf(x)=x4/3(113lnx)=0x=e3(x0)f(e3)=3e
解答limx0sin(2tan1x)tan(sin12x)x3=limx02x1+x22x14x2x3=limx0(2x2(1+x2)2x214x2){11+x2=1x2+x4x6+2x2(1+x2)=2x22+2x22x4+114x2=1+2x2+6x4+2x214x2=2=x2+4+12x2+limx0(2x2(1+x2)2x214x2)=limx0(610x2+)=6
解答y=limn1nn(n+1)(n+3)(3n1)y=limnn(1+1n)(1+3n)(1+2n1n)lny=limn1n(ln(1+1n)+ln(1+3n)++ln(1+2n1n))=limnnk=11nln(1+2k1n)=limn(2nk=112ln(1+kn)nk=112ln(1+2kn))=2012ln(1+x)dx1012ln(1+2x)dx=12([(x+1)ln(x+1)x]|20[(x+12)ln(1+2x)x]|10)=12(3ln32(32ln31))=ln33/4ey=33/4e
解答2tanu=x2sec2udu=dx1(x2+2)5/2dx=2sec2u(2tan2u+2)5/2du=2sec2u(2sec2u)5/2du=14sec3udu=14cos3udu=14(34sinu+112sin(3u))+C=316sinu+148sin(3u)+C=316sinu+148(3sin(u)4sin3u)+C=14sinu112sin3u+C=14xx2+2112x3(x2+2)3/2+C=x(x2+3)6(x2+2)3/2+C
解答11+x=1x+x2x3+x411+xdx=ln(1+x)=x12x2+13x314x4+15x5ln(1+x)x=112x+13x214x3+15x410ln(1+x)xdx=[x122x2+132x3142x4+]|10=1122+132142+152{S=n=11n2=1+122+132+=π26Sodd=1+132+152+172+Seven=122+142+162+Sodd=SSeven=S122(1+122+132+)=S14S=34S=π28Seven=SSodd=Sπ28=π22410ln(1+x)xdx=SoddSeven=π28π224=π212
解答

=122π0r2dθ=122π0(32+sinθ)2dθ=1243π=23π
解答(2,1)F(x,y,z)=2+z3+2z5=0z=1F(x,y,z)=xy+z3+xyz5dF=(y+yz)dx+(x+xz)dy+(3z2+xy)dz{dx=1.972=0.03dy=1.041=0.04dF(2,1,1)=2(0.03)+40.04+5dz=0dz=0.02f(1.97,2.04)=10.02=0.98
解答{u=x2+y2v=y2x2|(u,v)(x,y)|=|uxuyvxvy|=|2x2y2x2y|=8xy|(x,y)(u,v)|=18xy
解答令\cases{M(x,y)=(x-y)/(x^2+y^2)\\ N(x,y)= (x+y)/(x^2+y^2} \Rightarrow M_y=N_x= (-x^2-2xy+ y^2)/(x^2+y^2)^2\\ 令\Phi(x,y) = \int M\,dx= \int N\,dy = {1\over 2}\ln(x^2+y^2)+ \tan^{-1}(y/x)+C\\ 又\cases{A=r(0)= (2,1)\\ B= r(1)= (1,3)},則 \int_C Mdx +Ndy = \Phi(B)-\Phi(A) \\= {1\over 2}\ln 10+\tan^{-1}3 -({1\over 2} \ln 5+\tan^{-1}(1/2)) \\= \bbox[red, 2pt]{\ln \sqrt 2+ \tan^{-1}3-\tan^{-1}(1/2)}
 


==================== END ====================

解題僅供參考,其他轉學考歷屆試題及詳解

沒有留言:

張貼留言