Loading [MathJax]/jax/output/CommonHTML/jax.js

2022年12月16日 星期五

109年國立台北大學轉學考-工程數學詳解

國立臺北大學109學年度日間學士班轉學生招生

學制系級:通訊工程學系日間學士班3年級
科目:工程數學

解答(1){z1=210iz2=5iz=ˉz1/ˉz2=2+10i5+i=(2+10i)(5i)(5+i)(5i)=52i26=0+2i{x=0y=2(2){z1=210iz2=52z1/z2=210i5i=(210i)(5+i)(5i)(5+i)=52i26=2i¯z1/z2=0+2i{x=0y=2(3)lnz=e+πiz=ee+πi=eeeπi=ee(cosπ+isinπ)=ee{x=eey=0(4)lnz=0.4+0.2iz=e0.4+0.2i=e0.4(cos0.2+isin0.2){x=e0.4cos0.2y=e0.4sin0.2
解答(1){u=excosyv=exsiny{ux=excosyuy=exsinyvx=exsinyvy=excosy{ux=vyuy=vxf(z)analytic(2)f(z)=z2=(x+iy)2=x2y2+2xyi{u=x2y2v=2xy{ux=2xuy=2yvx=2yvy=2x{ux=vyuy=vxf(z)analytic
解答(1)r2+6r+5=0(r+5)(r+1)=0r=5,1{y1=e5xy2=exWronskian =|y1y2y1y2|=|e5xex5e5xex|=4e6x(2)y=C1e5x+C2exy=5C1e5xC2exy=25C1e5x+C2exy(0)=y(0)=4{5C1C2=425C1+C2=4{C2=2/5C2=6y=25e5x6ex
解答y4y+4y=0r24r+4=0r=2yh=C1e2x+C2xe2x{y1=e2xy2=xe2xw(y1,y2)=y1y2y2y1=e4xyp=y1y2r(x)wdx+y2y1r(x)wdx=e2x1x3dx+xe2x1x4dx=e2x2x213x2e2x=16x2e2xy=yh+ypy=C1e2x+C2xe2x+16x2e2x
解答(1)r(t)={1,0<t<10,otherwiser(t)=u(t)u(t1)L{r(t)}=L{u(t)}L{u(t1)}=1sess=1s(1es)(2)L{y}+L{y}=L{r(t)}s2Y(s)sy(0)y(0)+sY(s)y(0)=1s(1es)(s2+1)Y(s)=1s(1es)Y(s)=1s(s2+1)(1es)=(1sss2+1)(1es)y=L1((1sss2+1)(1es))=L1{1s(1es)}L1{ss2+1}+L1{ss2+1es}y(t)=r(t)cos(s)+u(t1)cos(t1)
解答f2πf(x)={π/2,0<xπ/2πx,π/2<x<ππ/2,π/2<x0xπ,π<x<π/2an=0bn=1πππf(x)sinnxdx=1π(π/2π(xπ)sinnxdx+0π/2(π2sinnxdx)+1π(π/20π2sinnxdx+ππ/2(πx)sinnxdx)=1π(2n2sin(nπ/2)+πncos(nπ/2)+2πnsin2(nπ/4))=1π(2n2sin(nπ/2)+πn)=1n+2n2πsin(nπ/2)Fourier series=n=1(1n+2n2πsin(nπ/2))sin(nx)
解答f=[x2+y2,3xy+z2,4z3]{fx=2xfy=3xfz=12z2div f=fx+fy+fz=5x+12z2curl f=|ijkxyzx2+y23xy+z24z3|=0i+0j+3yk2yk0j2zi=[2z,0,y]{div f=5x+12z2curl f=[2z,0,y]
=============== END ===================

解題僅供參考,其它轉學考試題及詳解

沒有留言:

張貼留言