國立臺北大學109學年度日間學士班轉學生招生
學制系級:通訊工程學系日間學士班3年級
科目:工程數學
解答:(1){u=excosyv=exsiny⇒{ux=excosyuy=−exsinyvx=exsinyvy=excosy⇒{ux=vyuy=−vx⇒f(z)analytic(2)f(z)=z2=(x+iy)2=x2−y2+2xyi⇒{u=x2−y2v=2xy⇒{ux=2xuy=−2yvx=2yvy=2x⇒{ux=vyuy=−vx⇒f(z)analytic
解答:(1)r2+6r+5=0⇒(r+5)(r+1)=0⇒r=−5,−1⇒{y1=e−5xy2=e−x⇒Wronskian =|y1y2y′1y′2|=|e−5xe−x−5e−5x−e−x|=4e−6x(2)y=C1e−5x+C2e−x⇒y′=−5C1e−5x−C2e−x⇒y″=25C1e−5x+C2e−x因此y′(0)=y″(0)=4⇒{−5C1−C2=425C1+C2=4⇒{C2=2/5C2=−6⇒y=25e−5x−6e−x
解答:先求齊次解,即y″−4y′+4y=0⇒r2−4r+4=0⇒r=2⇒yh=C1e2x+C2xe2x令{y1=e2xy2=xe2x⇒w(y1,y2)=y1y′2−y2y′1=e4x⇒yp=−y1∫y2⋅r(x)wdx+y2∫y1⋅r(x)wdx=−e2x∫1x3dx+xe2x∫1x4dx=e2x2x2−13x2e2x=16x2e2x⇒y=yh+yp⇒y=C1e2x+C2xe2x+16x2e2x
解答:(1)r(t)={1,0<t<10,otherwise⇒r(t)=u(t)−u(t−1)⇒L{r(t)}=L{u(t)}−L{u(t−1)}=1s−e−ss=1s(1−e−s)(2)L{y″}+L{y′}=L{r(t)}⇒s2Y(s)−sy(0)−y′(0)+sY(s)−y(0)=1s(1−e−s)⇒(s2+1)Y(s)=1s(1−e−s)⇒Y(s)=1s(s2+1)(1−e−s)=(1s−ss2+1)(1−e−s)⇒y=L−1((1s−ss2+1)(1−e−s))=L−1{1s(1−e−s)}−L−1{ss2+1}+L−1{ss2+1e−s}⇒y(t)=r(t)−cos(s)+u(t−1)cos(t−1)
解答:f為奇函數且週期為2π⇒f(x)={π/2,0<x≤π/2π−x,π/2<x<π−π/2,−π/2<x≤0−x−π,−π<x<−π/2⇒an=0且bn=1π∫π−πf(x)sinnxdx=1π(∫−π/2−π(−x−π)sinnxdx+∫0−π/2(−π2sinnxdx)+1π(∫π/20π2sinnxdx+∫ππ/2(π−x)sinnxdx)=1π(2n2sin(nπ/2)+πncos(nπ/2)+2πnsin2(nπ/4))=1π(2n2sin(nπ/2)+πn)=1n+2n2πsin(nπ/2)⇒Fourier series=∞∑n=1(1n+2n2πsin(nπ/2))sin(nx)
解答:f=[x2+y2,3xy+z2,4z3]⇒{fx=2xfy=3xfz=12z2⇒div f=fx+fy+fz=5x+12z2curl f=|ijk∂∂x∂∂y∂∂zx2+y23xy+z24z3|=0i+0j+3yk−2yk−0j−2zi=[−2z,0,y]因此{div f=5x+12z2curl f=[−2z,0,y]
=============== END ===================
解題僅供參考,其它轉學考試題及詳解
沒有留言:
張貼留言