2023年6月23日 星期五

112年屏東高中教甄-數學詳解

國立屏東高級中學112學年度正式教師甄試

一、填充題(共10題,每題6,共60分)

解答a93,84,,3979cdH23=48cdH24=53cdH29=102cd,(c,d)=(10,0),(0,10)H2102=91cd,(c,d)=(11,0),(0,11),(10,1),(1,10)H2114=89bcdH33=108bcdH34=153bcdH39=552bcd,(10,0,0)H3103=631bcd,(11,0,0),(10,1,0)9H3119=699abcdH43=208abcdH44=353abcdH49=2202abcd,(a,b,c,d)=(10,0,0,0)4H4104=2821abcd,(a,b,c,d)=(11,0,0,0),(10,1,0,0)16H41116=348 7+(4+5+6+7+8+9+10+9+8)+(10+15+21+28+36+45+55+63+69)+(20+35+56+84+120+165+220+282+348)=7+66+342+1330=1745
解答{AB=(1,1,1)AC=(1,1,1)n=AB×AC=(2,2,0)E=ABC:x+y=1H(a,b,c){AHBCBHACCHAB{(a,b1,c2)(2,2,0)=0(a+1,b2,c1)(1,1,1)=0(a1,b,c1)(1,1,1)=0H(a,a+1,3)HABCa+a+1=1a=0H(0,1,3)
解答
A=C=90ABCD,O,=aABO=45OBC=6045=15{¯BC=2acos15¯CD=2asin15¯BC+¯CD=2a(cos15+sin15)=2a62=6a=ka=k6ABCD=22a+k=226k+k=(3+233)k
解答a,b滿a2+b2=43
解答
解答
解答
:cosθ=13sinθ=223h=10+k=0(102k+102k+1)sinθ=10+10(2+1)223=10+202
解答(0,0,0)(3,1,2)(6,2,0)(3,1,2)x63=y21=z2(3t+6,t+2,2t),tR
解答y=28+25x(μx,μy)μy=28+2560=52{p=x/2+8q=y/47{μp=60/2+8=22σp=σx/2μq=52/47=6σq=σy/4q,pb=25×σy/4σx/2=15q,p:q=15(p+22)+615p+85(a,b)=(85,15)
解答f(x)=x3+9x2+8x+5f(x)=6x+18=0x=3y=f(x)P(3,f(3)=35)(f(s)+f(t))÷2=(42+28)÷2=35=f(3)(s+t)÷2=3s+t=6
解答f(x)=x2x+1x2+x+1f(x)=x21(x2+x+1)2=0x=±1{f(1)=1/3f(1)=3{M=log23m=log3Mm=2log23=log298Mm=8log29=2log293=93=729
解答a3=a4=aa5=2aa23+a24+a25=6a2<2344a19a5=2aa=18a3=a4=18,a5=36a21+a22=2344182182362=400(1)5i=1ai=a1+a2+18+18+36=a1+a2+72k2(2)(1)(2){a2=16a1=12a1+a5=12+36=48
解答x+2x1=x1+2x1+1=(x1)+x+1x12(x1)x+1x1=2x+1y+2y1=(y+1)+y+1y12y+1x+2x1+y+2y12(x+1+y+1){x1=x+1x1y1=y+1y1{x23x=0y23y=0{x=3y=3
解答a=x+y,{xz0y<1[a+19100]+[a+20100]++[a+85100]=67x+[y+19100]+[y+20100]++[y+85100]=500x=7[y+19100]+[y+20100]++[y+85100]50067×7=31{[y+19100]=[y+20100]==[y+54100]=0[y+55100]=[y+56100]=+[y+85100]=1{y+0.54<1y+0.5510.45y<0.46[100a]=[100x+100y]=745
解答{O(0,0)A(4,2){¯OA=25¯OAL:2xy+5=0CLC(a,2a+5)(52)×1805=108=60+45cosB=(25)2+(25)2¯AC222525264=40¯AC280¯AC2=4020(26)=¯OC2=a2+(2a+5)2a2+4a3+4(26)=0a=
解答f(x)=(3x+2)3(72x)2f(x)=9(3x+2)2(72x)24(3x+2)3(72x)=5(3x+2)2(72x)(6x+11)f(x)=30(3x+2)(72x)(6x+11)10(3x+2)2(6x+11)30(3x+2)2(72x)f(x)=0{x=2/3x=7/2x=11/6{f(2/3)=0f(7/2)>0f(11/6)<0f(11/6)=(112+2)3(7113)2=93752

↓↓↓↓↓↓↓↓↓↓↓↓↓↓  學校公布的答案 ↓↓↓↓↓↓↓↓↓↓↓↓



============================ END =============================
解題僅供參考,其他教甄試題及詳解

沒有留言:

張貼留言