國立暨南國際大學111學年度碩士班入學考試試題
科目:工程數學(線性代數+微分方程)
解答: (a)k=13⇒det(A)=k−11=2≠0⇒A is nonsigular(b)k=13⇒det(A−λI)=−λ3+15λ2−10λ+2=0⇒λ=⋯(c)(d)det(A)=k−12=−9⇒k=3(e)A=[103215413]⇒AT=[124011353](f)det(A)=k−11=0⇒k=11(g)Ax=B⇒{x1+3x3=5⋯(1)2x1+2x+3x3=8⋯(2)4x1+x2+11x3=m⋯(3)⇒{x1=5−3x3x2=3x3−2⇒18+2x3=m,取m=0⇒{x1=32x2=−29x3=−9(h)x=[32−29−9]
解答: (a)cosx+0⋅x−cosx=0⇒(1,0,−1)≠(0,0,0)⇒linear dependent(b)f(x)=a(x2−2x+5)+b(x2−4x+10)⇒f′(x)=a(2x−2)+b(2x−4){f(0)=0f′(0)=0⇒{5a+10b=0−2a−4b=0⇒a=−2b⇒linear dependent(c)cos(2x)=cos2x−sin2x⇒(−1)sin2x+cos2x−cos(2x)=0⇒(−1,1,−1)≠(0,0,0)⇒linear dependent(d)f(x)=a(x2−2x+5)+b(x2−5x+10)+cx2⇒f′(x)=a(2x−2)+b(2x−5)+2cx⇒f″(x)=2a+2b+2c⇒{f(0)=0f′(b)=0f″(0)=0⇒{5a+10b=0−2a−5b=0a+b+c=0⇒{a=0b=0c=0⇒linear independent(e)sin2x+cos2x=1⇒0⋅sinx+sin2x+cos2x−1=0⇒(0,1,1,−1)≠(0,0,0,0)⇒linear dependent(e)∞∑k=1akekx=0⇒a1+∞∑k=2ake(k−1)x=0⇒limx→−∞(a1+∞∑k=2ake(k−1)x)=0⇒a1=0⇒∞∑k=2akekx=0⇒a2+∞∑k=3ake(k−2)x=0⇒limx→−∞(a2+∞∑k=3ake(k−2)x)=0⇒a2=0⇒⋯⇒ak=0,k=1,2,⋯⇒linear independent
=========================== END ==============================
解題僅供參考, 其他歷年試題及詳解
沒有留言:
張貼留言