2024年6月18日 星期二

113年桃園市高中聯合教甄-數學詳解

桃園市立高級中等學校113學年度教師聯合甄選筆試試題

科目: 數學科
第壹部份:填充題( 共5題,占40分)

解答:f(x)=x6+ax5+bx4+cx3+dx2+ex+ff(x)=0,=df(x)=(xsin2π7)(xsin4π7)(xsin6π7)(xsin8π7)(xsin10π7)(xsin12π7)sin7θ=64sin7θ+112sin5θ56sin3θ+7sinθ=64sinθ(sin6θ74sin4θ+78sin2θ764)θ=2π7,4π7,,12π7,sin7θ=0,sinθ0,sin2π7,sin4π7,,sin12π7x674x4+78x2764=0=78:cos7θ+isin7θ=(cosθ+isinθ)7=7k=0C7kcoskθ(isinθ)7k,sin7θ
解答:{P(7,1,15)Q(x,0,0)R(0,y,0)=¯PQ+¯PR+¯QR=(x7)2+16+(y1)2+64+x2+y2=¯QA+¯RB+¯QR,{Q(x,0)R(0,y)A(7,4)B(8,1),{A(7,4)=AxB(8,1)=By=¯AB=152+52=510,,
解答:f(x)=(C22+C32x+C42++C72x5)4=(5n=0Cn+22xn)4g(x)=11x=n=0xnx2g(x)=n=0xn+2ddx(x2g(x))=n=0(n+2)xn+1d2dx2(x2g(x))=n=0(n+2)(n+1)xn=2n=0Cn+22xn1(1x)3=n=0Cn+22xnx5=(1(1x)3)4=1(1x)12=(1+x+x2+)12x5X1+X2++X12=5=H125=C165=4368
解答:8C124C168=8126=413
解答:f(n)=n+n4+n42+n43+100{f(60)=60+15+0=75<100f(70)=70+17+4+1=91<100f(80)=80+20+5+1=106>100{f(75)=75+18+4+1=98f(76)=76+19+4+1=10076,24,100

第貳部份: 計算題(共3題,占30分)

解答:(1)an=(3n+13n1)nlnan=nln3n+13n1=ln(3n+1/(3n1)1/nlimnlnan=limnln(3n+1/(3n1)1/n=limn(ln(1+23n1))(1/n)=limn3n13n+1(6(3n1)2)1n2=1827=23limnan=e2/3(2)limnan=xx=6+xx2x6=0(x3)(x+2)=0x=3(x>0,)
解答:u=x2du=2xdxI=10x1+x4dx=101/21+u2duu=tanθdu=sec2θdθI=12π/40sec2θsecθdθ=12π/40secθdθ=12[ln|tanθ+secθ|]|π/40=12(2+1)
解答:f(x,y)=2x24x+y24y+1{fx=4x4fy=2y4fxx=4>0fxy=0fyy=2d(x,y)=fxxfyyf2xy=8>0{fx=0fy=0(x,y)=(1,2)f(1,2)=5,{f(0,0)=1f(0,2)=3{15

第參部份: 證明題(共 3 題,占 30 分)

解答:(1)n>lnn1nlnn>1nn=1nn=21nlnn>n=21n:調n=21nlnn(2)n=17(2n+5)n<n=177n:17n=17(2n+5)n
解答::{v1=(1,0,0,0)v2=(0,1,0,0)v3=(0,0,1,0)v4=(0,0,0,1){|v1v2v3v4|=|1000010000100001|=1|v4v1v2v3|=|0001100001000010|=1|v1v2v3v4||v4v1v2v3|
解答:S(n)=n,1S(1)<S(2)<<S(7)13S(k)=7,1k7,S(k)7,k,S(1)S(7)S(i),S(j)7,S(i)<S(j),(S(j)S(i))70,ij7,


沒有留言:

張貼留言