國立竹東高級中學 113 學年度第一次教師甄試數學科試卷
一、填充題(每題 7 分,共 56 分)
解答:x2−3x+1=0⇒x−3+1x=0⇒x+1x=3⇒{(x+1x)2=32(x+1x)3=33⇒{x2+1x2+2=9x3+1x3+3(x+1x)=27⇒{x2+1x2=7x3+1x3=18⇒(x2+1x2)2=72⇒x4+1x4=47⇒(x4+1x4)(x3+1x3)=47×18⇒x7+1x7+x+1x=846⇒x7+1x7=746−3=843解答:f(x)=x+√k−x2⇒k−x2≥0⇒k≥x2≥0f′(x)=0⇒1=x√k−x2⇒x2=k2⇒x=±√k2⇒最大值f(√k2)=√k2+√k2=2√13⇒k=26f(x)最小值發生在k−x2=0⇒x2=k⇒x=−√26⇒f(−√26)=−√26
解答:{F1:x+y+z=0F2:x+y+z=k⇒d(F1,F2)=|k|√3{L1=E1∩E2:x=y=zL2=E2∩E3:x−4=y+4=zL3=E1∩E3:x−8=y−4=z⇒{A=F1∩L1=(0,0,0)B=F1∩L2=(4,−4,0)C=F1∩L3=(4,0,−4)⇒△ABC面積=12‖→AB×→AC‖=12⋅16√3=8√3⇒三角柱體積=8√3⋅|k|√3=30⇒k=±154
解答:[x′y′]=[0110][1301][xy]=[yx+3y]⇒[xy]=[y′−3x′x′]⇒x2+y2=1⇒(y′−3x′)2+x′2=1⇒Γ:(y−3x)2+x2=1
解答:bn=2n∑k=11n⋅k√n2+k2⇒an=12bn, as n→∞⇒limn→∞bn=∫20x√1+x2dx=∫511/2√udu=√5−1⇒limn→∞an=12limn→∞bn=√5−12
解答:此題不計分
解答:{a3+b4+c6=1a4+b5+c7=1a6+b7+c9=1⇒{4a+3b+2c=1235a+28b+20c=14021a+18b+14c=126⇒[432352820211814][abc]=[12140126]⇒A=[432352820211814]⇒A−1=[16−32−357−521−9272]⇒[abc]=A−1[12140126]=[24−7063]⇒a+b+c=24−70+63=17
解答:a2=a1⇒a3=a2+a1=2a2⇒a4=a3+a2+a1=4a2⇒an=2n−2a2⇒1a1+1a2+⋯+1an+⋯=17+17+17⋅2+17⋅22+⋯=17+17(1+12+122+⋯)=17+17⋅2=37
二、計算證明題(共 44 分)
解答:由於n∑k=iCnkCki=Cni2n−i,因此n∑k=3CnkCk3=Cn32n−3=132n−4(n−2)(n−1)n可以想成有n個物品分成三群,各有3個,k−3個,及n−k個的方法數先將n個取3個有Cn3,剩下n−3個分成2群有2n−3種分法,因此有Cn32n−3種分法解答:(1)Γ3:y=√(1−x2)3⇒V3=∫1−1(1−x2)3πdx=2π∫10(1−x2)3dx=2π[−17x7+35x5−x3+x]|10=2π⋅1635=32π35(2)假設In=∫10(1−x2)ndx,取{u=(1−x2)ndv=dx⇒{u=−2nx(1−x2)n−1v=x⇒In=[x(1−x2)n]|10+2n∫10x2(1−x2)n−1dx=0+2n∫10(1−(1−x2))(1−x2)n−1dx=2n∫10(1−x2)n−1dx−2n∫10(1−x2)ndx=2nIn−1−2nIn⇒In=2n2n+1In−1⇒Vn+1Vn=2n+22n+3InIn=2n+22n+3QED
解答:y=4−3sinx2+cosx⇒3sinx+ycosx=4−2y⇒√y2+9sin(x+α)=4−2y⇒sin(x+α)=4−2y√y2+9⇒|4−2y√y2+9|≤1⇒(4−2y)2≤y2+9⇒3y2−16y+7≤0⇒(y−8+√433)(y−8−√433)≤0⇒8−√433≤y≤8+√433
解答:假設A(a,b),由於13(2A+B)=P(1,2)⇒B(3−2a,6−2b)⇒{a2+b2=37(3−2a)2+(6−2b)2=37⇒a+2b=13⇒a=13−2b⇒(13−2b)2+b2=37⇒5b2−52b+132=0⇒(b−6)(5b−22)=0⇒{b=6⇒a=1b=22/5⇒a=21/5⇒{A(1,6),B(1,−6)A(21/5,22/5),B(−27/5,−14/5)⇒↔AB:x=1,3x−4y+5=0
================= END==========================
計算第二題的(1):V_3是對(1-x^2)^3積分,不是(1-x^2)^6,故答案有誤.
回覆刪除已修訂,謝謝!
刪除