台灣聯合大學113學年度學士班轉學生考試
科目: 微積分
類組別: A3/A4/A6
甲、填充題:共8題,每題8分,共64分
解答:limx→2∫x24sinttdtx−2=limx→2(∫x24sinttdt)′(x−2)′=limx→22sinx2x=sin4解答:Let {u=e−2xdv=cosxdx, then{du=−2e−2xdxv=sinx⇒I=∫e−2xcosxdx=e−2xsinx+2∫e−2xsinxdxAgain, let {u=e−2xdv=sinxdx, then {du=−2e−2xdxv=−cosx⇒I=e−2x(sinx−2cosx)−4I⇒I=15e−2x(sinx−2cosx)⇒∫∞0e−2xcosxdx=[15e−2x(sinx−2cosx)]|∞0=25
解答:u=ex−1⇒du=exdx⇒I=∫ln170ex√ex−1ex+15dx=∫160√uu+16duv=√u⇒dv=du2√u=12vdu⇒I=∫402v2v2+16dv=2∫40(1−16v2+16)dvw=v4⇒dw=14dv⇒I=8−32∫401v2+16dv=8−32∫1014(w2+1)dw=8−8∫101w2+1dw=8−8[tan−1w]|10=8−2π
解答:{x=rcosθy=rsinθ⇒J=|∂(x,y)∂(r,θ|=r⇒∬D(x2+y2)3/2dA=∫π/30∫30r4drdθ=∫π/302435dθ=815π
解答:{u=x+yv=x−y⇒{x=(u+v)/2y=(u−v)/2⇒|∂(x,y)∂(u,v)|=‖1/21/21/2−1/2‖=12∬R(x+y)ex2−y2dA=12∫30∫20ueuvdvdu=12∫30[euv]|20du=12∫30(e2u−1)du=12[12e2u−u]|30=14(e6−7)
解答:{x=ρsinϕcosθy=ρsinϕsinθz=ρcosϕ⇒J=|∂(x,y,z)∂(ρ,ϕ,θ|=ρ2sinϕ⇒∭Ex2dV=∫π0∫π0∫20ρ4sin3ϕcos2θdρdϕdθ=325∫π0∫π0sin3ϕcos2θdϕdθ=12815∫π0cos2θdθ=6415π
解答:{x(t)=costy(t)=sintz(t)=ln(cost)⇒{x′(t)=−sinty′(t)=costz′(t)=−tant⇒ length of the curve =∫π/40√sin2t+cos2t+tan2tdt=∫π/40√1+tan2tdt=∫π/40sectdt=[ln|sect+tant|]|π/40=ln(1+√2)
解答:r(t)=(t−sint)i+(1−cost)j⇒r′(t)=(1−cost)i+sintj⇒∫CF⋅dr=∫2π0((t−sint)i+(3−cost)j)⋅((1−cost)i+sintj)dt=∫2π0((t−sint)(1−cost)+(3−cost)(sint))dt=∫2π0(t−tcost+2sint)dt=[12t2−tsint−3cost]|2π0=2π2
解答:(a)L=(tanx)cosx⇒lnL=cosxln(tanx)=ln(tanx)1/cosxlimx→(π/2)−ln(tanx)1/cosx=limx→(π/2)−(ln(tanx))′(1/cosx)′=limx→(π/2)−cosxsin2x=0⇒limx→(π/2)−L=e0=1(b)y=αx⇒lim(x,y)→(0,0)y2sin2xx4+y4=limx→0α2x2sin2x(α4+1)x4=α2α4+1limx→0sin2xx2=α2α4+1limx→0(sin2x)′(x2)′=α2α4+1limx→0sin2x2x=α2α4+1 is dependent on the value of α⇒ the limit does not exist
解答:f(x,y)=(x2+y2)e−x⇒{fx=e−x(2x−x2−y2)fy=2ye−x⇒{fxx=e−x(x2+y2−4x+2)fxy=−2ye−xfyy=2e−x⇒D(x,y)=fxxfyy−(fxy)2=2e−x(x2−y2−4x+2){fx=0fy=0⇒{(x,y)=(0,0)(x,y)=(2,0)⇒{D(0,0)=4>0⇒fxx(0,0)=2>0⇒f(0,0)=0D(2,0)=−4e−2<0⇒{local minimum: 0saddle point: (2,0)
解答:{x(t)=costy(t)=sintz(t)=ln(cost)⇒{x′(t)=−sinty′(t)=costz′(t)=−tant⇒ length of the curve =∫π/40√sin2t+cos2t+tan2tdt=∫π/40√1+tan2tdt=∫π/40sectdt=[ln|sect+tant|]|π/40=ln(1+√2)
解答:r(t)=(t−sint)i+(1−cost)j⇒r′(t)=(1−cost)i+sintj⇒∫CF⋅dr=∫2π0((t−sint)i+(3−cost)j)⋅((1−cost)i+sintj)dt=∫2π0((t−sint)(1−cost)+(3−cost)(sint))dt=∫2π0(t−tcost+2sint)dt=[12t2−tsint−3cost]|2π0=2π2
乙、計算、證明題:共3題,每題12分,共36分。
解答:(a)an=(−1)nxn32n(2n)!⇒limn→∞|an+1an|=limn→∞|an+1an|=limn→∞|(−1)n+1xn+132n+2(2n+2)!⋅32n(2n)!(−1)nxn|=limn→∞|x32(2n+2)(2n+1)|=0⇒the radius of convergence: ∞(b)an=1n(1+ln2n)⇒an+1=1(n+1)(1+ln2(n+1))⇒an>an+1and limn→∞an=0,by alternating series test, it is convergent⇒2na2n=2n2n(1+ln22n)=11+n2(ln2)2<1(ln2)2(1+n2)<1(ln2)2n2 convergentBy Cauchy Condensation Test,∞∑n=1|(−1)nn(1+ln2n)| is convergent. That is , it is absolutely convergent.解答:(a)L=(tanx)cosx⇒lnL=cosxln(tanx)=ln(tanx)1/cosxlimx→(π/2)−ln(tanx)1/cosx=limx→(π/2)−(ln(tanx))′(1/cosx)′=limx→(π/2)−cosxsin2x=0⇒limx→(π/2)−L=e0=1(b)y=αx⇒lim(x,y)→(0,0)y2sin2xx4+y4=limx→0α2x2sin2x(α4+1)x4=α2α4+1limx→0sin2xx2=α2α4+1limx→0(sin2x)′(x2)′=α2α4+1limx→0sin2x2x=α2α4+1 is dependent on the value of α⇒ the limit does not exist
解答:f(x,y)=(x2+y2)e−x⇒{fx=e−x(2x−x2−y2)fy=2ye−x⇒{fxx=e−x(x2+y2−4x+2)fxy=−2ye−xfyy=2e−x⇒D(x,y)=fxxfyy−(fxy)2=2e−x(x2−y2−4x+2){fx=0fy=0⇒{(x,y)=(0,0)(x,y)=(2,0)⇒{D(0,0)=4>0⇒fxx(0,0)=2>0⇒f(0,0)=0D(2,0)=−4e−2<0⇒{local minimum: 0saddle point: (2,0)
======================== END ========================
解題僅供參考, 其他歷年試題及詳解
沒有留言:
張貼留言