Loading [MathJax]/jax/output/CommonHTML/jax.js

2024年7月26日 星期五

113年台聯大轉學考-微積分A3A4A6詳解

 台灣聯合大學113學年度學士班轉學生考試

科目: 微積分
類組別: A3/A4/A6

甲、填充題:共8題,每題8分,共64分

解答:limx2x24sinttdtx2=limx2(x24sinttdt)(x2)=limx22sinx2x=sin4
解答:Let {u=e2xdv=cosxdx, then{du=2e2xdxv=sinxI=e2xcosxdx=e2xsinx+2e2xsinxdxAgain, let {u=e2xdv=sinxdx, then {du=2e2xdxv=cosxI=e2x(sinx2cosx)4II=15e2x(sinx2cosx)0e2xcosxdx=[15e2x(sinx2cosx)]|0=25
解答:u=ex1du=exdxI=ln170exex1ex+15dx=160uu+16duv=udv=du2u=12vduI=402v2v2+16dv=240(116v2+16)dvw=v4dw=14dvI=832401v2+16dv=8321014(w2+1)dw=88101w2+1dw=88[tan1w]|10=82π
解答:{x=rcosθy=rsinθJ=|(x,y)(r,θ|=rD(x2+y2)3/2dA=π/3030r4drdθ=π/302435dθ=815π
解答:{u=x+yv=xy{x=(u+v)/2y=(uv)/2|(x,y)(u,v)|=1/21/21/21/2=12R(x+y)ex2y2dA=123020ueuvdvdu=1230[euv]|20du=1230(e2u1)du=12[12e2uu]|30=14(e67)
解答:{x=ρsinϕcosθy=ρsinϕsinθz=ρcosϕJ=|(x,y,z)(ρ,ϕ,θ|=ρ2sinϕEx2dV=π0π020ρ4sin3ϕcos2θdρdϕdθ=325π0π0sin3ϕcos2θdϕdθ=12815π0cos2θdθ=6415π
解答:{x(t)=costy(t)=sintz(t)=ln(cost){x(t)=sinty(t)=costz(t)=tant length of the curve =π/40sin2t+cos2t+tan2tdt=π/401+tan2tdt=π/40sectdt=[ln|sect+tant|]|π/40=ln(1+2)
解答:r(t)=(tsint)i+(1cost)jr(t)=(1cost)i+sintjCFdr=2π0((tsint)i+(3cost)j)((1cost)i+sintj)dt=2π0((tsint)(1cost)+(3cost)(sint))dt=2π0(ttcost+2sint)dt=[12t2tsint3cost]|2π0=2π2

乙、計算、證明題:共3題,每題12分,共36分。

解答:(a)an=(1)nxn32n(2n)!limn|an+1an|=limn|an+1an|=limn|(1)n+1xn+132n+2(2n+2)!32n(2n)!(1)nxn|=limn|x32(2n+2)(2n+1)|=0the radius of convergence: (b)an=1n(1+ln2n)an+1=1(n+1)(1+ln2(n+1))an>an+1and limnan=0,by alternating series test, it is convergent2na2n=2n2n(1+ln22n)=11+n2(ln2)2<1(ln2)2(1+n2)<1(ln2)2n2 convergentBy Cauchy Condensation Test,n=1|(1)nn(1+ln2n)| is convergent. That is , it is absolutely convergent.
解答:(a)L=(tanx)cosxlnL=cosxln(tanx)=ln(tanx)1/cosxlimx(π/2)ln(tanx)1/cosx=limx(π/2)(ln(tanx))(1/cosx)=limx(π/2)cosxsin2x=0limx(π/2)L=e0=1(b)y=αxlim(x,y)(0,0)y2sin2xx4+y4=limx0α2x2sin2x(α4+1)x4=α2α4+1limx0sin2xx2=α2α4+1limx0(sin2x)(x2)=α2α4+1limx0sin2x2x=α2α4+1 is dependent on the value of α the limit does not exist
解答:f(x,y)=(x2+y2)ex{fx=ex(2xx2y2)fy=2yex{fxx=ex(x2+y24x+2)fxy=2yexfyy=2exD(x,y)=fxxfyy(fxy)2=2ex(x2y24x+2){fx=0fy=0{(x,y)=(0,0)(x,y)=(2,0){D(0,0)=4>0fxx(0,0)=2>0f(0,0)=0D(2,0)=4e2<0{local minimum: 0saddle point: (2,0)

======================== END ========================

解題僅供參考, 其他歷年試題及詳解

沒有留言:

張貼留言