國立臺灣海洋大學113學年度碩士班考試入學招生考試試題
考試科目:微積分
學系組名稱:運輸科學系碩士班不分組
解答:f′(x)=limh→0f(x+h)−f(x)h=limh→02(x+h)2−5(x+h)−2x2+5xh=limh→04hx+2h2−5hh=limh→0(4x+2h−5)=4x−5解答:f(x)=x3−2|x|3+1⇒{limx→∞f(x)=1limx→−∞f(x)=−1⇒ horizontal asymptotes: y=1,y=−1
解答:y=tan2(sin3t)⇒dydt=2tan(sin3t)sec2(sin3t)3sin2tcost=6tan(sin3t)sec2(sin3t)sin2tcost
解答:f(x,y)=xcosy+yex⇒{∂f∂x=cosy+yex∂f∂y=−xsiny+ex⇒{∂2f∂x2=yex∂2f∂x∂y=−siny+ex∂2f∂y2=−xcosy
解答:∫20dx√|x−1|=∫10dx√1−x+∫21dx√x−1=[−2√1−x]|10+[2√x−1]|21=2+2=4
解答:∫π/40√1+cos(4x)dx=∫π/40√1+2cos2(2x)−1dx=√2∫π/40cos(2x)dx=√2[12sin(2x)]|π/40=√22
解答:x=3tanu⇒dx=3sec2udu⇒I=∫1x2√x2+9dx=∫3sec2u9tan2u⋅3secudu=∫secu9tan2udu=∫cosu9sin2udu=−19sinu+c=−√x2+99x+c
解答:∬
解答:f(x)=2x-3x^{2/3}\\ \textbf{(a)}\; \text{domain of }f: \bbox[red, 2pt]{(-\infty, \infty)} \\\quad \lim_{x\to \infty}f(x)=\infty, \lim_{x\to -\infty}f(x)=-\infty \Rightarrow \bbox[red, 2pt]{\text{No asymptotes}} \\\textbf{(b)}\;f'(x)=2-2x^{-1/3}=2(1-{1\over \sqrt[3]x})=0 \Rightarrow x=1 \Rightarrow \cases{f(0)=0\\ f(1)=-1}\\\quad \Rightarrow \bbox[red, 2pt]{\text{critical points: }(0,0),(1,-1)}\\\textbf{(c)}\; \begin{cases} f'(x)\gt 0& x\lt 0\\ f'(x)\lt 0 & 0\lt x\le 1\\ f'(x) \gt 0& x\ge 1\end{cases} \Rightarrow \bbox[red, 2pt]{\cases{f \text{ is increasing, if }x\lt 0, x\ge 1\\ \text{f is decreasing, if }0\lt x\le 1}} \\\textbf{(d)}\;\text{from (c), we have} \bbox[red, 2pt]{\text{local minimum: -1; local maximum: 0}} \\\textbf{(e)}\;f''(x)={2\over 3x^{4/3}} \gt 0, \forall x\ne 0 \Rightarrow \bbox[red, 2pt]{f(x) \text{ is concave up }, x \in (-\infty, 0) \cup (0, \infty)} \\\textbf{(f)}:
======================== END ==========================
解題僅供參考, 其他歷年試題及詳解
沒有留言:
張貼留言