Loading [MathJax]/jax/element/mml/optable/MathOperators.js

2024年7月27日 星期六

113年海洋大學碩士班-微積分詳解

 國立臺灣海洋大學113學年度碩士班考試入學招生考試試題

考試科目:微積分
學系組名稱:運輸科學系碩士班不分組

解答:f(x)=limh0f(x+h)f(x)h=limh02(x+h)25(x+h)2x2+5xh=limh04hx+2h25hh=limh0(4x+2h5)=4x5
解答:f(x)=x32|x|3+1{limxf(x)=1limxf(x)=1 horizontal asymptotes: y=1,y=1
解答:y=tan2(sin3t)dydt=2tan(sin3t)sec2(sin3t)3sin2tcost=6tan(sin3t)sec2(sin3t)sin2tcost
解答:f(x,y)=xcosy+yex{fx=cosy+yexfy=xsiny+ex{2fx2=yex2fxy=siny+ex2fy2=xcosy
解答:20dx|x1|=10dx1x+21dxx1=[21x]|10+[2x1]|21=2+2=4
解答:π/401+cos(4x)dx=π/401+2cos2(2x)1dx=2π/40cos(2x)dx=2[12sin(2x)]|π/40=22
解答:x=3tanudx=3sec2uduI=1x2x2+9dx=3sec2u9tan2u3secudu=secu9tan2udu=cosu9sin2udu=19sinu+c=x2+99x+c
解答:
解答:f(x)=2x-3x^{2/3}\\ \textbf{(a)}\; \text{domain of }f: \bbox[red, 2pt]{(-\infty, \infty)} \\\quad \lim_{x\to \infty}f(x)=\infty, \lim_{x\to -\infty}f(x)=-\infty \Rightarrow \bbox[red, 2pt]{\text{No asymptotes}} \\\textbf{(b)}\;f'(x)=2-2x^{-1/3}=2(1-{1\over \sqrt[3]x})=0 \Rightarrow x=1 \Rightarrow \cases{f(0)=0\\ f(1)=-1}\\\quad \Rightarrow \bbox[red, 2pt]{\text{critical points: }(0,0),(1,-1)}\\\textbf{(c)}\; \begin{cases} f'(x)\gt 0& x\lt 0\\ f'(x)\lt 0 & 0\lt x\le 1\\ f'(x) \gt 0& x\ge 1\end{cases} \Rightarrow \bbox[red, 2pt]{\cases{f \text{ is increasing, if }x\lt 0, x\ge 1\\ \text{f is decreasing, if }0\lt x\le 1}} \\\textbf{(d)}\;\text{from (c), we have} \bbox[red, 2pt]{\text{local minimum: -1; local maximum: 0}} \\\textbf{(e)}\;f''(x)={2\over 3x^{4/3}} \gt 0, \forall x\ne 0 \Rightarrow \bbox[red, 2pt]{f(x) \text{ is concave up }, x \in (-\infty, 0) \cup (0, \infty)} \\\textbf{(f)}:



======================== END ==========================

解題僅供參考, 其他歷年試題及詳解

沒有留言:

張貼留言