Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

2024年7月3日 星期三

113年金門縣國中教甄聯招-數學詳解

金門縣113學年度國民中學正式教師聯合甄選

解答:=a+b+c=4log1/2(a+b+c)=log1/24=2(D)

解答:x2+4x+3=x+kx2+3x+3k=094(3k)=0k=34x2+3x+94=0x=32y=x+k=32+34=34(32,34)(C)
解答:cosπ17cos13π17cos3π17+cos5π17=12cos14π17+cos12π17cos3π17+cos5π17=12cos3π17cos15π17cos3π17+cos5π17=12(A)
解答:f(k)=k2(k+3)(k2)+7=k2k+1=0k=1(C)
解答:Py=x2P(t,t2),tRP(0,1)=t2+(t21)2=t4t2+1=(t212)2+34t2=12,P(0,1){P(1/2,1/2)Q(1/2,1/2)¯PQ=2(B)
解答:{=11/35=6/351135+635=1735(C)
解答:σ(X)=σ(X+50)=25((B)
解答:A=[cos60sin60sin60cos60]60A6=I(C)
解答:f(θ)=1+tanθsecθf(θ)=sec2θsecθ(1+tanθ)secθtanθsec2θ=secθ(1+tanθ)tanθsecθf(π/4)=222=0(A)
解答:80x+1dx=91udu=[23u3/2]|91=23(271)=523(A)
解答:{A(1,7,1)B(4,7,1)C(1,7,5){¯AB=3¯BC=5¯CA=4=5A+4B+3C5+4+3=112(5+16+3,35+28+21,5+4+15)=112(24,84,24)=(2,7,2)(B)
解答:x+y+3i=4+xyi{x+y=4xy=3x,ya2+4a+3=0(x,y)=(3,1),(1,3)(xy)2=((31)i)2=(423)=4+23(D)
解答:=363=7293=726(B)
解答:limx1x2+2x3x1=limx1(x+3)(x1)x1=limx1(x+3)=4(D)
解答:11×4+12×5+13×6++1n×(n+3)+=13(1114+1215+1316+1417++1n1n+3+)=13(11+12+13)=1118(B)
解答:
{y=x3/2y=2x{A(0,0)B(2,4)C(2,4),=220(2xx32)dx=2[x218x4]|20=22=4(A)
解答:f(x)=x3+ax2+bx3f(x)=3x2+2ax+b=3(x1)(x+2)=3x2+3x6{a=3/2b=6a×b=9(A)
解答:f(x)=x2+xf(x)=2x+1P(t,t2+t)2t+1=t2+t1t1t22t=0{t=0t=2{P(0,0)P(2,6){¯PQ:x=y¯PQ:5xy=4(B)
解答:x+1(x+1)+1(x1)+1x+1=x+2x+3(x+1)(x+3)=(x+1)(x+2)+x+2(x1)+1x+1=(x+1)(x+2)+x+2x2x+1x+3=(1x2+1)(x+2)x2x2=0=1(A)
解答:{3x2+2xy+y22y1=0(1)x2+2xyy+1=0(2)1=3x2+2xy+y22y=yx22xy4x2+4xy+y2=3yy=13(2x+y)2(2)(xy)2=3{x=y3(y3)2+2(y3)yy+1=03y2(43+1)y+4=0x=y+3(y+3)2+2(y+3)yy+1=03y2+(431)y+4=0(C),(A),,:


解答:(a+b5)2=(1+5)(16+85)a2+5b2+2ab5=56+245{a2+5b2=56ab=12a456a2+720=0(a220)(a236)=0a2=36(a,a220){a=6b=2a=6b=2(a,b)=(6,2),(6,2)(B)
解答:(2+323)2=42=2(2+323)12=26=82log8(2+323)12=log882=2(C)
解答:{tanA=5/6cotB=11{sinA=5/61cosA=6/61sinB=1/122cosB=11/122sin(A+B)=sinAcosB+sinBcosA=5561122+612261=12A+B=45(C)
解答:sin(sin145+sin1513)=451213+35513=6365cos(sin145+sin1513)=1665sin(sin11665)=cos(sin145+sin1513)=1665sin145+sin1513+sin11665=π2(A)
解答::(x1)2+4(y32)2=4P(2cosθ+1,sinθ+32)(2,2)¯PQQ(2cosθ+3,sinθ+52)(2cosθ+2)2+4(sinθ+1)2=4cosθ+sinθ=1θ=π2,2π¯PQ=2sinθ14cosθ2=12(C)
解答:ML:xy+2=0M(t,t+2)¯MA¯MB=f(t)=(t2)2+(t+3)2(t+1)2+(t3)2f(t)=04t+22t2+2t+13=4t42t24t+109t266t+21=0(t7)(9t3)=0{t=7M(7,9)t=1/3M(1/3,7/3)=¯ABLf(t)a+b=7+9=16(D)
解答:x=12(113){2x2=103114x4=1996011x4x4+34x4+x2x2+82x2+10x+5=(x+3)4x4+(x+8)2x2+19x+5=(x+3)(1996011)+(x+8)(19311)+10x+5=(2196311)x+68220411=12(2196311)(113)+68220411=7(D)
解答:c=0{ab=1a3b=23{a=3b=1/3ab+c=1(B)
解答:1,aan=a+n1S=ni=1ai=(2a+n1)n2=1000(2a+n1)n=2000=2453(2a+n1)n2,5{a=28n=25ara1=5228=137a+b=20(D)
解答:t=ax+axt2=a2x+a2x+2a2x+a2x=t22a3x+a3x=(ax+ax)(a2x+a2x1)=t(t23)=18t33t18=0(t3)(t2+3t+6)=0t=3a2x+a2x=322=7(A)
解答:12+128=12+232=8+4=22+2{x=4y=222y+2+4y+y2y+24y+y2=22+4224=22+2222=12+824=3+22=2+1(C)
解答:cosB=12=22+62¯AC2226¯AC=27¯BD¯AD¯DC=¯AB¯BC=26¯AD=72cosABD=cos30=32=22+¯BD2744¯BD¯BD=3322.6(B)
解答:200i=5ai=200i=5logi=9i=5logi+99i=10logi+200i=100logi=0+90×1+101×2=292(D)
解答:y=3sinx2+cosx2y+ycosx=3sinxycosx+sinx=32yy+1sin(x+α)=32ysin(x+α)=32yy+1|32yy+1|13y212y+80(y2)243223y2+23{a=2+23b=223a+b=4(A)
解答: Lagrange :F(a,b,c,λ,μ)=b24b+3λ(a+2b+4c)μ(a2+4b2+16c26){Fa=λ2aμ=0Fb=2b42λ8bμ=0Fc=4λ32μc=0λ=2μa=8μca=4c4c+2b+4c=0c=14b{a=bc=b/4(b)2+4b2+16(b/4)2=6b=±1{b=1b24b+3=0b=1b24b+3=8=0(B)
解答:{A(3,1)B(2,5)C(1,3){LAB:6x+y=17LBC:2x+3y=11LAC:x+y=2ABC=12|311251131|=10{SMAB=15/3SMBC=10/3SMCA=5/3{
解答:\cases{|\vec a|=1,|\vec b|=2, |\vec c|=3\\ \vec a+\vec b+\vec c=0 } \Rightarrow \cases{\vec b=2\vec a\\ \vec c=-3\vec a}  \Rightarrow |2\vec a+3\vec b+5\vec c|= |2\vec a+6\vec a-15\vec a|=|-7\vec a|= 7\\,故選\bbox[red, 2pt]{(A)}
解答:\sqrt{(x-6)^2+5^2} +\sqrt{(x+2)^2+1} =\overline{PQ}+ \overline{PR}, 其中\cases{P(x,0)\\ Q(6,5)\\ R(-2,1)} \\ \Rightarrow R對稱x軸的對稱點R'(-2,-1) \Rightarrow L= \overleftrightarrow{QR'}:4y=3x+2 \Rightarrow P=L\cap x軸=P(-{2\over 3},0) \\ \Rightarrow s=\overline{QR'}=10 \Rightarrow 6r+s=-4+10=6,故選\bbox[red, 2pt]{(B)}
解答:\cases{x+ky=10-2k \cdots(1)\\ kx-y=10k \cdots(2)} \Rightarrow (1)\times k \Rightarrow kx+k^2y=10k-2k^2 \cdots(3)\\ 由(2) \Rightarrow kx=10k+y 代入(3) \Rightarrow 10k+y+k^2y=10k-2k^2 \Rightarrow y={-2k^2\over k^2+1} \\ \Rightarrow y=-2+{2\over k^2+1} 為整數 \Rightarrow k=0,\pm 1,有三種可能,故選\bbox[red, 2pt]{(C)}
解答:M=abcde, 其中\cases{a為萬位數字\\ b為千位數字\\ c為百位數字\\ d為十位數字\\ e為個位數字},需滿足1\le a\le 9, 0\le b,c,d,e\le 9 \\ \Rightarrow \cases{a=9 \Rightarrow H^4_3\\ a=8 \Rightarrow H^4_4\\ \cdots\\ a=3\Rightarrow H^4_9\\ a=2 \Rightarrow H^4_{10}-4 (b,c,d,e=10四種情形)\\ a=1 \Rightarrow H^4_{11}-4-12 (b,c,d,e=11, 或(10,1,0,0)排列數} \\ \Rightarrow 共有 \left(\sum_{k=3}^{11}H^4_k \right)-4-4-12 = \left({1\over 6}\sum_{k=3}^{11} (k+1)(k+2)(k+3) \right)-20 =1350-20=1330\\,故選\bbox[red, 2pt]{(A)}
解答:11^2=121 \Rightarrow 11^3=1210+121=1331 \xrightarrow{只考慮後三位}331 \Rightarrow 3310+331=3641\\ \Rightarrow 6410+641=7051 \Rightarrow 0510+051=561 \Rightarrow 5610+561=6171 \Rightarrow 1710+171=1881\\ \Rightarrow 8810+881=9691 \Rightarrow 6910+691=7601 \Rightarrow 601 \Rightarrow 6+0+1=7,故選\bbox[red, 2pt]{(C)}
解答:{3\over 2+3}+{4\over 2+4}-{3+4\over 2+3+4} ={22\over 45} \Rightarrow b-a=45-22=23,故選\bbox[red, 2pt]{(B)}
解答:
\overline{BQ}為\angle B的角平分線 \Rightarrow {\overline{AB} \over \overline{BC}} ={\overline{AQ} \over \overline{QC}} \Rightarrow {3\over 5} ={2\over \overline{CQ}} \Rightarrow \overline{CQ}={10\over 3} \\ 同理可得\overline{BP}={9\over 5},\overline{AR}={48\over 31} \\ 又\overline{AP}為\angle A的角平分線 \Rightarrow \cos \angle BAP= \cos \angle CAP \Rightarrow {9+\overline{AP}^2-{81\over 25} \over 6\overline{AP}} ={{256\over 9}+\overline{AP}^2 -{256\over 25} \over {32\over 3}\overline{AP}} \\ \Rightarrow \overline{AP}={16\over 5}, 又{\overline{AM} \over \overline{MP}}={\overline{AB} \over \overline{BP}} ={3\over 9/5} ={15\over 9}\Rightarrow \overline{AM}={15\over 24}\cdot \overline{AP}= {15\over 24}\cdot{16\over 5}=2,故選\bbox[red, 2pt]{(C)}
解答:

假設\cases{\overline{AB}=1\\ \overline{BP}=a\\ \overline{DQ}=b}, 由於\angle PAQ=45^\circ \Rightarrow \overline{PQ}=a+b \; \href{https://zhidao.baidu.com/question/193097272.html}{參考資料} \\ {ABCD\over \triangle APQ}={5\over 2} \Rightarrow S_{\triangle APQ}={2\over 5} \Rightarrow S_{\triangle ABP}+ S_{\triangle ADQ}+ S_{\triangle PQC}= {3\over 5} \\ \Rightarrow {1\over 2}(a+b+(1-a)(1-b))={1\over 2}(1+ab)={3\over 5} \Rightarrow ab={1\over 5}\\ 又\overline{PQ}^2=\overline{PC}^2 +\overline{QC}^2 \Rightarrow (a+ b)^2=(1-a)^2+(1-b)^2 \Rightarrow 2ab=-2(a+b)+2 \\ \Rightarrow a+b=1-{1\over 5}={4\over 5} \Rightarrow {\overline{AB} \over \overline{PQ}}={1\over 4/5}={5\over 4},故選\bbox[red, 2pt]{(B)}
解答:
\triangle ADF \cong \triangle ABE \;(RHS) \Rightarrow \overline{BE}=\overline{DF}=a \Rightarrow \overline{CE}=\overline{CF}= 1-a \\ \Rightarrow \cases{\overline{AE}^2= 1+a^2\\ \overline{EF}^2=2(1-a)^2} \Rightarrow \overline{AE}=\overline{EF} \Rightarrow 1+a^2 =2(1-a)^2 \Rightarrow a^2-4a+1=0 \\ \Rightarrow a=2-\sqrt 3 \;(a=2+\sqrt 3\gt 1不合) \Rightarrow \overline{AE}=\sqrt{1+a^2} =\sqrt{8-4\sqrt 3} =\sqrt{8-2\sqrt{12}} \\=\sqrt 6-\sqrt 2,故選\bbox[red, 2pt]{(B)}
解答:
\angle B= \angle D=90^\circ \Rightarrow ABCD共圓,因此假設\cases{ 圓心O\\ 半徑r} \Rightarrow \angle C=180^\circ- \angle A=120^\circ\\ \triangle BCD: \cos \angle C={\overline{BC}^2+\overline{CD}^2-\overline{BD}^2 \over 2\cdot \overline{BC} \cdot \overline{CD}} \Rightarrow \overline{BD}=\sqrt 7\\ \triangle OBD: \cos \angle DOB=\cos (2\angle A) = {2r^2-\overline{BD}^2\over 2r^2} \Rightarrow r=\sqrt{7 \over 3} \\ \Rightarrow \overline{AC}=2r= 2\sqrt{7\over 3} \Rightarrow \overline{AC}^2={28\over 3} \Rightarrow a+b=28+3=31,故選\bbox[red, 2pt]{(D)}
解答:x={1\over \sqrt 2-1} =\sqrt 2+1 \Rightarrow \cases{a=2\\ b=\sqrt 2-1} \Rightarrow -x=-\sqrt 2-1 \Rightarrow \cases{c=-a-1\\ d=2-\sqrt 2} \\ \Rightarrow b^3+d^3+3bd=13-9\sqrt 2-12+9\sqrt 2=1,故選\bbox[red, 2pt]{(B)}
解答:\cases{\sum_{i=1}^8 a_i=56\\ \sum_{i=2}^7 a_i=44} \Rightarrow a_1 +a_8=12 \Rightarrow \cases{(a_1,a_8)=(1,11) \Rightarrow 在2-10挑6個數總和為44 \\ (a_1,a_8)=(2,10)  \Rightarrow 在3-9挑6個數總和為44 \\ (a_1,a_8)=(3,9) \times:4-8不足6個數} \\ \Rightarrow 1\lt 4\lt 6\lt 7\lt 8\lt 9\lt 10\lt 11 \Rightarrow \cases{a_2=4\\ a_7=10} \Rightarrow 2_2+a_7=18,故選\bbox[red, 2pt]{(A)}
解答:f(n)=a(2n+2)(2n+3)(2n+4) +b(2n+1)(2n+3)(2n+4) \\\qquad +c(2n+1)(2n+2)(2n+4)+ d(2n+1)(2n+2)(2n+3) =6 \\ \Rightarrow \cases{f(-1/2)=6a=6 \Rightarrow a=1\\ f(-1)=-2b=6 \Rightarrow b=-3 \\f(-3/2) =2c=6 \Rightarrow c=3\\ f(-2)=-6d=6 \Rightarrow d=-1}  \Rightarrow 2a+b+2c+d=2-3+6-1=4,故選\bbox[red, 2pt]{(C)}
解答:S=\sum_{i=1}^{10} x_i \le 13 \Rightarrow S=10,11,12,13 \\ \Rightarrow \cases{S=10 \Rightarrow 10個1 \Rightarrow 1種情形\\ S=11 \Rightarrow 9個1,1個2 \Rightarrow 10種情形\\ S=12 \Rightarrow \cases{9個1,1個3 \Rightarrow 10種情形 \\ 8個1,2個2 \Rightarrow 45種情形} \\ S=13 \Rightarrow \cases{9個1,1個4\Rightarrow 10種情形\\ 8個1,1個2,1個3\Rightarrow 90種情形 \\ 7個1,3個2 \Rightarrow 120種情形}} \Rightarrow 合計286,故選\bbox[red, 2pt]{(C)}
===================== END ========================




2 則留言:

  1. 老師您好:第44題若解 ab=1/5及 a+b=4/5 算出來應該是無解的,謝謝老師

    回覆刪除
    回覆
    1. 題目的確有疑慮,主要的問題在ABCD:APQ=5:2, 只能參考參考!!!

      刪除