國立臺北科技大學114學年度碩士班招生考試
系所組別:2140 電機工程系碩士班丁組
第一節 線性代數 試題(選考)
解答:a. {x+y+2z+w=3−x+z+2w=12x+2y+w=−2x+y+2z+3w=5⇒[1121−101222011123][xyzw]=[31−25]⇒A=[1121−101222011123]b. det(A)=|1121−101222011123|R1+R2→R2,R3−2R1→R3,R4−R1→R4→|1121013300−4−10002|=|1330−4−1002|=−8c. det(A)=−8≠0⇒Yes, it is consistent.d. det(A)=−8≠0⇒rank(A)=4⇒Yes, they are linearly independent.e. rref(A)=[1000010000100001]⇒Ax=0⇒x=[0000]f. [A∣I]=[11211000−101201002201001011230001]R1+R2→R2,R3−2R1→R3,R4−R1→R4→[112110000133110000−4−1−20100002−1001]R1−R2→R1,R3/(−4)→R3,R4/2→R4→[10−1−20−1000133110000114120−1400001−120012]R1+R3→R1,R2−3R3→R2→[100−7412−1−14001094−12134000114120−1400001−120012]R1+(7/4)R4→R1,R2−(9/4)R4→R2,R3−(1/3)R4→R3→[1000−38−1−1478010058134−980010580−14−180001−120012]⇒A−1=[−38−1−147858134−98580−14−18−120012]g. x=A−1[31−25]=[114−174741]解答:a. false:a[1000]+b[0100]+c[0010]=[abc0]≠[0002],∀a,b,c∈Rb. true:Ax=b≡[12401310−1][x1x2x3]=[b1b2b3]⇒A=[12401310−1]⇒det(A)=1⇒A−1 exists. ⇒x=A−1b is a unique solution.c. false:aM1+bM2+cM3=[a−abc]=M4=[2−113]⇒{a=2a=1b=1c=3⇒M4 cannot be a combination of M1,M2, and M3⇒span(S)≠span(T)
解答:a. B={1,x,x2}={[100],[010],[001]},B′={1,x+1,x2+x+1}={[100],[110],[111]}⇒[100]=1⋅[100],[010]=−1⋅[100]+1⋅[110],[001]=1⋅[111]−1⋅[110]⇒[I]B′B=[1−1001−1001]b. p(x)=3−x+2x2=[3−12]B⇒[p(x)]B′=[1−1001−1001][3−12]=[4−32]c. [1−1010001−1010001001]R1+R2→R1→[10−111001−1010001001]R1+R3→R1,R2+R3→R2→[100111010011001001]⇒ inverse of [I]B′B=[111011001]
解答:a. 2x2−4x+6=ax2+(a−2b)x+b⇒{a=2a−2b=−4b=6⇒ No solution (a,b,c) exists.⇒p(x)∉R(T)b. ax2+(a−2b)x+b=[ba−2ba]=a[011]+b[1−20]⇒a basis of R(T)={[011],[1−20]}
解答:a. M=[0.750.250.20.150.450.40.10.30.4]⇒M2=[315092533100115092537100425725310]⇒M2[0.250.30.45]=[8232000=0.41156592000=0.32952591000=0.1295]⇒{plan A:41.15%plan B:32.95%plan C:12.95%b. M=[2110√5−22−√5−221310−√52√52111][1000−√5+310000√5+310][52252252213√5−25220−31√5−2522013√5+85220−13√5−2522031√5−25220−13√5+85220]⇒M∞=[2110√5−22−√5−221310−√52√52111][100000000][52252252213√5−25220−31√5−2522013√5+85220−13√5−2522031√5−25220−13√5+85220]=[214421442144134413441344522522522]⇒M∞[0.250.30.45]=[21441344522]
解答:A=[113−3]⇒W=AAT=[20018]⇒ eigenvalues: λ1=2,λ2=18(W−λ1I)v=0⇒[00016][x1x2]=0⇒x2=0⇒v=x1[10], choose eigenvector v1=[10](W−λ2)v=0⇒[−16000][x1x2]=0⇒x1=0⇒v=x2[01], choose eigenvector v2=[01]{σ1=√λ1=√2σ2=√λ2=3√2⇒∑=[σ100σ2]=[√2003√2]⇒U=[v1v2]=[1001]⇒{u1=1σ1ATv1=[√2/2√2/2]u2=1σ2ATv2=[√2/2−√2/2]⇒V=[u1u2]=[√22√22√22−√22]A=UΣVT=[1001][√2003√2][√22√22√22−√22] ====================== END ==========================
解題僅供參考,其他碩士班試題及詳解
沒有留言:
張貼留言