2025年4月6日 星期日

114年台北科大電機碩士班-線性代數詳解

國立臺北科技大學114學年度碩士班招生考試

系所組別:2140 電機工程系碩士班丁組
第一節 線性代數 試題(選考)

解答:a. {x+y+2z+w=3x+z+2w=12x+2y+w=2x+y+2z+3w=5[1121101222011123][xyzw]=[3125]A=[1121101222011123]b. det(A)=|1121101222011123|R1+R2R2,R32R1R3,R4R1R4|1121013300410002|=|133041002|=8c. det(A)=80Yes, it is consistent.d. det(A)=80rank(A)=4Yes, they are linearly independent.e. rref(A)=[1000010000100001]Ax=0x=[0000]f. [AI]=[11211000101201002201001011230001]R1+R2R2,R32R1R3,R4R1R4[11211000013311000041201000021001]R1R2R1,R3/(4)R3,R4/2R4[1012010001331100001141201400001120012]R1+R3R1,R23R3R2[1007412114001094121340001141201400001120012]R1+(7/4)R4R1,R2(9/4)R4R2,R3(1/3)R4R3[1000381147801005813498001058014180001120012]A1=[381147858134985801418120012]g. x=A1[3125]=[114174741]

解答:a. false:a[1000]+b[0100]+c[0010]=[abc0][0002],a,b,cRb. true:Ax=b[124013101][x1x2x3]=[b1b2b3]A=[124013101]det(A)=1A1 exists. x=A1b is a unique solution.c. false:aM1+bM2+cM3=[aabc]=M4=[2113]{a=2a=1b=1c=3M4 cannot be a combination of M1,M2, and M3span(S)span(T)
解答:a. B={1,x,x2}={[100],[010],[001]},B={1,x+1,x2+x+1}={[100],[110],[111]}[100]=1[100],[010]=1[100]+1[110],[001]=1[111]1[110][I]BB=[110011001]b. p(x)=3x+2x2=[312]B[p(x)]B=[110011001][312]=[432]c. [110100011010001001]R1+R2R1[101110011010001001]R1+R3R1,R2+R3R2[100111010011001001] inverse of [I]BB=[111011001]
解答:a. 2x24x+6=ax2+(a2b)x+b{a=2a2b=4b=6 No solution (a,b,c) exists.p(x)R(T)b. ax2+(a2b)x+b=[ba2ba]=a[011]+b[120]a basis of R(T)={[011],[120]}
解答:a. M=[0.750.250.20.150.450.40.10.30.4]M2=[315092533100115092537100425725310]M2[0.250.30.45]=[8232000=0.41156592000=0.32952591000=0.1295]{plan A:41.15%plan B:32.95%plan C:12.95%b. M=[211052252213105252111][10005+3100005+310][5225225221352522031525220135+852201352522031525220135+85220]M=[211052252213105252111][100000000][5225225221352522031525220135+852201352522031525220135+85220]=[214421442144134413441344522522522]M[0.250.30.45]=[21441344522]
解答:A=[1133]W=AAT=[20018] eigenvalues: λ1=2,λ2=18(Wλ1I)v=0[00016][x1x2]=0x2=0v=x1[10], choose eigenvector v1=[10](Wλ2)v=0[16000][x1x2]=0x1=0v=x2[01], choose eigenvector v2=[01]{σ1=λ1=2σ2=λ2=32=[σ100σ2]=[20032]U=[v1v2]=[1001]{u1=1σ1ATv1=[2/22/2]u2=1σ2ATv2=[2/22/2]V=[u1u2]=[22222222]A=UΣVT=[1001][20032][22222222]

====================== END ==========================
解題僅供參考,其他碩士班試題及詳解

沒有留言:

張貼留言