國立臺北大學114學年度碩士班一般入學考試
系(所)組別:都市計劃研究所
科目:微積分
解答:f(x)=13x3−ax2+bx+c⇒f′(x)=x2−2ax+bf(x) has extreme values at x=1,2⇒{f′(1)=0f′(2)=0⇒{1−2a+b=04−4a+b=0⇒{a=3/2b=2⇒f(x)=13x3−32x2+2x+c⇒f(1)=13−32+2+c=5⇒c=256

解答:f(x)=15x5−12x4−x3+4x2−4x+3⇒f′(x)=x4−2x3−3x2+8x−4⇒f″(x)=4x3−6x2−6x+8f′(x)=(x−1)2(x−2)(x+2)=0⇒x=1,2,−2⇒{f″(1)=0f″(2)=4>0f″(−2)=−36<0⇒{f(2)=7/5f(−2)=103/5⇒{local minimum: 7/5local maximum: 103/5
解答:A. L=(1x2)x⇒lnL=xln1x2⇒limx→0lnL=limx→0ln1/x21/x=limx→0−2/x−1/x2=limx→0x=0⇒limx→0L=e0=1B. limx→π/2xtan(x) This limit does not exist.C. limt→1t−1lnt=limt→111/t=limt→1t=1D. limx→2x−2x2−4=limx→2x−2(x−2)(x+2)=limx→21x+2=14
解答:A. u=16−x3⇒du=−3x2dx⇒∫3√70x2√16−x2dx=∫916−13√udu=−13[23u3/2]|916=−29(27−64)=749B. {u=xdv=sinxdx⇒{du=dxv=−cosx⇒∫xsinxdx=−xcosx+∫cosxdx=−xcosx+sinx+CC. u=ex+e−x⇒du=(ex−e−x)dx⇒∫ex−e−xex+e−xdx=∫1udu=lnu+C=ln(ex+e−x)+CD. ∫x−2x2+x−2dx=∫x−2(x+2)(x−1)dx=∫(4/3x+2−1/3x−1)dx=43ln(x+2)−13ln(x−1)+C
解答:x3−x2y+2xy3=1⇒3x2−2xy−x2y′+2y3+6xy2y′=0⇒y′=2xy−3x2−2y36xy2−x2⇒y′(1,1)=2−3−26−1=−35⇒y=−35(x−1)+1⇒3x+5y=8
解答:題目有誤,x≤y≤x−1⇒x≤y且y≤x−1,矛盾
解答:A.limn→∞|xn+1xn|<1⇒limn→∞|x|<1⇒R=1B. limn→∞|xn+2(n+3)!⋅(n+2)!xn+1|=limn→∞|xn+3|=0⇒R=∞C. limn→∞|(4x−5)2n+3(n+1)1/2⋅n1/2(4x−5)2n+1|=limn→∞|√nn+1⋅(4x−5)2|=(4x−5)2<1⇒−1<4x−5<1⇒1<x<32⇒−14<x−54<14⇒|x−54|<14⇒R=14
====================== END ==========================
解題僅供參考,其他碩士班試題及詳解
沒有留言:
張貼留言