國立臺北科技大學114學年度碩士班招生考試
系所組別:1120 機械工程系機電整合碩士班乙組
第一節 工程數學 試題
解答:
y″+2y′+2y=0⇒λ2+2λ+2=0⇒λ=−1±i⇒yh=e−x(c1cosx+c2sinx)yp=Acos3x+Bsin3x⇒y′p=−3Asin3x+3Bcos3x⇒y″p=−9Acos3x−9Bsin3x⇒y″p+2y′p+2yp=(−7A+6B)cos3x+(−6A−7B)sin3x=3.5sin3x−3cos3x⇒{−7A+6B=−3−6A−7B=3.5⇒{A=0B=−0.5⇒yp=−0.5sin3x⇒y=yh+yp⇒y=e−x(c1cosx+c2sinx)−0.5sin3x⇒y(0)=c1=0⇒y=c2e−xsinx−0.5sin3x⇒y′=−c2e−xsinx+c2e−xcosx−1.5cos3x⇒y′(0)=c2−1.5=0.5⇒c2=2⇒y=2e−xsinx−0.5sin3x解答:
v=1y3⇒v′=−3y4y′⇒y′=−y4v′3⇒−y4v′3+13y=13(1−2x)y4⇒−v′+v=1−2x⇒v′−v=2x−1⇒v′e−x−ve−x=(2x−1)e−x⇒(ve−x)′=(2x−1)e−x⇒ve−x=∫(2x−1)e−xdx=−e−x(2x+1)+c1⇒v=1y3=−(2x+1)+c1ex⇒y=3√1c1ex−2x−1解答:
[A∣I]=[00110001210101300001]2R2→R2,3R3→R3→[001100012020100003]R1↔R3→[100003012020001100]R2−2R3→R2→[100003010−220001100]⇒A−1=[003−220100]解答:
解答:
y(x,t)=X(x)T(t)⇒XT″=c2X″T⇒T″c2T=X″X=kB.C.:{y(0,t)=X(0)T(t)=0y(L,t)=X(L)T(t)=0⇒{X(0)=0X(L)=0,y(x,0)=X(x)T(0)=0⇒T(0)=0Case I k=0⇒X=c1x+c2⇒{X(0)=c2=0X(L)=c1L+c2=0⇒{c1=0c2=0⇒X=0⇒y=0Case II k=ρ2>0⇒X″−ρ2X=0⇒X=c1eρx+c2e−ρx⇒{X(0)=c1+c2=0X(L)=c1eρL+c2e−ρL=0⇒c1eρL−c1e−ρL=0⇒c1(e2ρL−1)=0⇒c1=0⇒c2=0⇒X=0⇒y=0Case III k=−ρ2<0⇒X″+ρ2X=0⇒X=c1cos(ρx)+c2sin(ρx)⇒X(0)=c1=0⇒X=c2sin(ρx)⇒X(L)=c2sin(ρL)=0⇒sin(ρL)=0⇒ρL=nπ⇒ρ=nπL⇒Xn=sin(nπxL),n=1,2,…T″+ρ2c2T=0⇒T=c1cos(ρct)+c2sin(ρct)⇒T(0)=c1=0⇒T=c2sin(ρct)⇒Tn=sin(nπctL),n=1,2,…⇒yn=sin(nπxL)sin(nπctL)⇒y=∞∑n=1ansin(nπxL)sin(nπctL)⇒∂y∂t(x,t)=∞∑n=1annπcLsin(nπxL)cos(nπctL)⇒∂y∂t(x,0)=∞∑n=1annπcLsin(nπxL)=A⇒annπcL=2L∫L0Asin(nπxL)dx=2AL⋅Lnπ(1−(−1)n)⇒an=2ALn2π2c(1−(−1)n)⇒y(x,t)=∞∑n=12ALn2π2c(1−(−1)n)sin(nπxL)sin(nπctL)
====================== END ==========================
解題僅供參考,其他
碩士班試題及詳解
沒有留言:
張貼留言