財團法人大學入學考試中心基金會
115學年度學科能力測驗試題
數學A考科
第壹部分、選擇(填)題(占85分)
一、單選題(占 30 分)
解答:$$兩次都抽到「吉」的機率:{1\over 3^2} \Rightarrow 期望值=180\times {1\over 9}=20\\ 兩次都抽到「祥」的機率:{1\over 3^2} \Rightarrow 期望值= 90\times {1\over 9}=10 \\ \Rightarrow 獎金期望值:20+10=30,故選\bbox[red, 2pt]{(2)}$$
解答:$$f(x)= \lfloor \sqrt{99-x} \rfloor+ \lfloor \sqrt{99+x} \rfloor \Rightarrow \cases{f(1)= \lfloor \sqrt{98} \rfloor+ \lfloor \sqrt{100} \rfloor =9+10=19 \\f(0) =\lfloor \sqrt{99} \rfloor+ \lfloor \sqrt{99} \rfloor =9+9=18 \\f(-20) =\lfloor \sqrt{119} \rfloor+ \lfloor \sqrt{79} \rfloor =10+8=18} \\ \Rightarrow f(-20)=f(0)\lt f(1),故選\bbox[red, 2pt]{(1)}$$
解答:$$c_1, c_2, c_3成等差\Rightarrow \cases{c_1=c_2-10/3\\ c_3=c_2+10/3} \Rightarrow \cases{f(c_1) =a^{(c_2-10/3)} \\f(c_2) =a^{c_2} \\ f(c_3) =a^{(c_2+10/3)}} \Rightarrow 公比4=f(c_2)/f(c_1)=a^{10/3}\\ \Rightarrow a=4^{3/10} =2^{3/5}\Rightarrow {f(8)\over f(10)} ={a^8\over a^{10}} =a^{-2} = \left( 2^{3/5} \right)^{-2} =2^{-6/5},故選\bbox[red, 2pt]{(1)}$$
解答:$$草藥:從6種基本材料中選3種 \Rightarrow 1種道具\\ 食物(2基本+1進階):C^{10}_1=10種食物\\ 藥水:\cases{1基本+2進階: C^6_1\times C^{10}_2=270\\ 3進階:C^{10}_3 =120} \Rightarrow 270+120=390種藥水 \\ \Rightarrow 總共有1+10+390=401種道具,故選\bbox[red, 2pt]{(3)}$$
解答:$$\cases{A\vec u_1=\vec w_1 \\A\vec u_2=\vec w_2 \\A\vec u_3=\vec w_3} \Rightarrow A \begin{bmatrix} \vec u_1\; \vec u_2\; \vec u_3 \end{bmatrix} = \begin{bmatrix}\vec w_1 \;\vec w_2\; \vec w_3 \end{bmatrix} \\ \Rightarrow A \begin{bmatrix}1& 0& 1\\ 1& -1& 0\\ 0& 1&-1 \end{bmatrix} = \begin{bmatrix}0& 1&0\\ -1& 1& 0\\ 1& 0& 0 \end{bmatrix} \Rightarrow A= \begin{bmatrix}0& 1&0\\ -1& 1& 0\\ 1& 0& 0 \end{bmatrix} \begin{bmatrix}1& 0& 1\\ 1& -1& 0\\ 0& 1&-1 \end{bmatrix}^{-1} \\= \begin{bmatrix}0& 1&0\\ -1& 1& 0\\ 1& 0& 0 \end{bmatrix} \begin{bmatrix} 1/2& 1/2& 1/2\\ 1/2& -1/2 & 1/2\\ 1/2& -1/2& -1/2 \end{bmatrix} = \begin{bmatrix}1/2 &-1/2& 1/2\\ 0&-1& 0\\ 1/2& 1/2& 1/2 \end{bmatrix} \\\Rightarrow A\vec v =\begin{bmatrix}1/2 &-1/2& 1/2\\ 0&-1& 0\\ 1/2& 1/2& 1/2 \end{bmatrix} \begin{bmatrix}v_1\\ v_2\\ v_3 \end{bmatrix} = \begin{bmatrix}1\\ 0\\ 1 \end{bmatrix} \Rightarrow \cases{v_1+v_3=0\\ v_2=0} \Rightarrow \vec v= k\begin{bmatrix}1\\ 0\\ -1 \end{bmatrix}, k\in \mathbb{R}, k\ne 0 \\ \Rightarrow \vec v有無窮多個,故選\bbox[red, 2pt]{(5)}$$
解答:
$$C在直線L:y=-6上\Rightarrow C(a,-6) \Rightarrow \cases{\overline{AB} =5 \\ \overline{AC} = \sqrt{(a-2)^2+16} \\ \overline{BC} =\sqrt{(a+1)^2+64} \\ d(A,L)=4\\ d(B,L)=8} \\ \triangle ABC為等腰:\\ \textbf{Case I }\overline{AB}= 5=\overline{AC} \Rightarrow \sqrt{(a-2)^2+16}=5 \Rightarrow \cases{a=5 \Rightarrow C(5,-6) \Rightarrow A,B,C皆在4x+3y=2上\\ a=-1 \Rightarrow C(-1,-6)} \\ \textbf{Case II } \overline{BA}= 5=\overline{BC} \Rightarrow\sqrt{(a+1)^2+64} =5 \Rightarrow (a+1)^2=-39 \;矛盾\\ \textbf{Case III }\overline{CA} =\overline{CB} \Rightarrow (a-2)^2+16=(a+1)^2+64 \Rightarrow a=-{15\over 2} \Rightarrow C(-{15\over 2},-6)\\ 符合等腰\triangle 的C有兩點(-1,-6), (-{15\over 2},-6),故選\bbox[red, 2pt]{(2)}$$
二、多選題(占 30 分)
解答:
$$假設\cases{f(x,y)=2x-y-3\\ g(x,y)=x+2y+1} \Rightarrow \cases{f(0,0)=-3 \not \gt 0\\ g(0,0)=1\not \lt 0} \Rightarrow \cases{2x-y-3\gt 0不含原點\\ x+2y+1\lt 0不含原點} \\ \Rightarrow 繪圖可知交集區域在第三、四象限,故選\bbox[red, 2pt]{(34)}$$
解答:$$(1)\times: A^2= \begin{bmatrix} 5& 2\\ 2& 1 \end{bmatrix} \Rightarrow b_2=c_2=2 \\(2) \bigcirc:2A= \begin{bmatrix}4&2\\2& 0 \end{bmatrix} \Rightarrow 2A+ \begin{bmatrix}1&0\\0&1 \end{bmatrix} = \begin{bmatrix}5& 2\\2& 1 \end{bmatrix} =A^2 \\(3)\times A^2=2A+I \Rightarrow A^{n+2}=2A^{n+1}+A^n \Rightarrow c_{n+2} =2c_{n+1}+c_n \\(4)\times: n=1 \Rightarrow \begin{bmatrix}b_2\\ d_2 \end{bmatrix} = \begin{bmatrix}a_1&b_1\\ c_1& d_1 \end{bmatrix} \begin{bmatrix}0\\ 1 \end{bmatrix} =\begin{bmatrix}2& 1\\1& 0 \end{bmatrix} \begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix}1\\ 0 \end{bmatrix}, 但由(2)知\cases{b_2=2 \ne 1\\ d_2=1\ne 0} \\(5)\bigcirc: A^{2n} =A^n \times A^n = \begin{bmatrix}a_n& b_n\\ c_n& d_n \end{bmatrix} \begin{bmatrix}a_n& b_n\\ c_n& d_n \end{bmatrix} = \begin{bmatrix}a_n^2+ b_nc_n& a_nb_n+b_nd_n\\ a_nc_n + c_nd_n& b_nc_n+d_n^2 \end{bmatrix} \\ \qquad \Rightarrow \cases{a_{2n} =a_n^2+b_nc_n\\ d_{2n}=b_nc_n+d_n^2} \Rightarrow d_{2n}-a_{2n}=d_n^2-a_n^2\\,故選\bbox[red, 2pt]{(25)}$$
解答:$$(1)\bigcirc: 英文T分數= 50+10 \left( {52-60\over 8} \right) =40 \\(2)\bigcirc: 數學:S-T= S-50-10\cdot {S-60\over 12} ={1\over 6}S\ge 0\\ (3)\times:反例: \cases{乙生數學72, 英文60分 \Rightarrow 原始平均66\\ 丙生數學60, 英文70分 \Rightarrow 原始平均65} \\\quad \Rightarrow \cases{乙生T分數:數學60, 英文50 \Rightarrow T分數平均55\\ 丙生T分數:數學50, 英文62.5 \Rightarrow T分數平均56.25} \\(4)\bigcirc: \cases{40=50+10\cdot {S-60\over 12} \Rightarrow 數學原始分數S=48 \\40=50+10\cdot {S-60\over 8} \Rightarrow 英文原始分數S=52} \Rightarrow 數學\lt 英文\\ (5)\times: 假設數學與英文原始成績的相關係數為r \Rightarrow 迴歸直線斜率m_a=r\cdot {\sigma_y\over \sigma_x}={8\over 12}r \\ \qquad \Rightarrow T轉換後兩科標準差皆為10,轉換前兩科標準差不同, 但r不變 \\\qquad \Rightarrow 轉換後斜率m_b=r\cdot {10\over 10}=r\ne m_a\\,故選\bbox[red, 2pt]{(124)}$$
解答:$$(1)\bigcirc: \cos \angle BAD ={\overrightarrow{AB} \cdot \overrightarrow{AD} \over |\overrightarrow{AB}| |\overrightarrow{AD}} ={-28\over \sqrt{40}\cdot \sqrt{26}}={-28\over 4\sqrt{65}} ={-7\sqrt{65} \over 65} \\(2) \times:\sin \angle BAD={4\over \sqrt{65}} \Rightarrow \triangle ABD面積={1\over 2} |\overrightarrow{AB}||\overrightarrow{AD}| \sin \angle BAD={1\over 2} \cdot \sqrt{40} \cdot \sqrt{26} \cdot {4\over \sqrt{65}}=8 \ne 9\\ (3)\times: \triangle ADE =\triangle ABD-\triangle ABE=8-3=5 \Rightarrow {\overline{BE} \over \overline{ED}} ={3\over 5} \Rightarrow \overrightarrow{AE} ={5\over 8} \overrightarrow{AB} +{3\over 8} \overrightarrow{AD} \\\qquad ={5\over 8}(2,-6)+{3\over 8}(1,5)=({13\over 8},-{15\over 8}) \ne ({3\over 2},{1\over 2}) \\(4) \times:\triangle ABD=\triangle ABC \Rightarrow \triangle BCE=\triangle ADE=5\\ \triangle AEB \sim \triangle CED (AAA) \Rightarrow {\triangle ABE\over \triangle CDE} = \left( {\overline{BE} \over \overline{DE}} \right)^2= \left( {3\over 5} \right)^2= {9\over 25}\\\qquad \Rightarrow \triangle CDE={25\over 9} \triangle ABE ={25\over 9}\cdot 3={25\over 3} \Rightarrow ABCD面積=8+5+{25\over 3} ={64\over 3}\ne {65\over 3}\\(5)\bigcirc: \overrightarrow{DC} = {5\over 3}\overrightarrow{AB} =({10\over 3},-10) \Rightarrow \overrightarrow{BC} =\overrightarrow{BA}+ \overrightarrow{AD}+ \overrightarrow{DC} =(-2,6)+(1,5)+({10\over 3},-10) \\\qquad =({7\over 3},1) \Rightarrow |\overrightarrow{BC}|= \sqrt{{49\over 9}+1} ={\sqrt{58} \over 3} \lt {\sqrt{64} \over 3}={8\over 3} \Rightarrow \overline{BC} \lt {8\over 3}\\,故選\bbox[red, 2pt]{(15)}$$
解答:$$(1)\times: 顯然(0,1)為\Gamma與L_m的交點, 但0不是負值\\ (2) \bigcirc:(a,b)在L_m上\Rightarrow b=ma+1=(-m)(-a)+1 \Rightarrow (-a,b)在L_{-m}上 \\(3) \times:\cos \left( {\pi\over 2}\cdot {20\over 3} \right) = \cos {10\pi\over 3} =-{1\over 2} \ne {1\over 2} \\(4) \bigcirc:\cos {\pi x\over 2}=-1 \Rightarrow x=\pm 2(2k-1),k\in Z \Rightarrow \pm 2m(2k-1)+1=-1 \Rightarrow {1\over m}=\mp(2k-1)為奇數 \\(5)\times: 假設(1,0)為其中一個交點 \Rightarrow L_m: y=-x+1 \Rightarrow 兩圖形交點為(0,1),(1,0), (2,-1),共3點\\ \qquad 又\cases{x\gt 2 \Rightarrow y=-x+1 \lt -1 (\Gamma的最小值) \Rightarrow \Gamma與L_m無交點\\ x\lt 0 \Rightarrow y=-x+1\gt 1(\Gamma 的最大值) \Rightarrow \Gamma與L_m無交點 \\ 0\lt x\lt 1, 1\lt x\lt 2 \Rightarrow \Gamma與x軸無交點} \Rightarrow 交點數不是偶數\\,故選\bbox[red, 2pt]{(24)}$$
解答:$$(1) \times: f(x)=g(x) \Rightarrow 2x^3+2x=0 \Rightarrow 唯一實根x=0 \Rightarrow 只有一個交點\\ (2) \bigcirc:f(x)=x^3+bx^2+cx+d \Rightarrow f''(x)=6x+2b=0 \Rightarrow a_1=x=-{b\over 3} \Rightarrow \cases{a_1=-b/3\\ b_1=f(-b/3)} \\\quad g(x)=f(x)-(2x^3+2x)=-x^3+bx^2+(c-2)x+d \Rightarrow g''(x)=-6x+2b=0 \\\quad \Rightarrow a_2=x=b/3 \Rightarrow \cases{a_2=b/3\\ b_2=g(b/3)} \Rightarrow a_1+a_2=0可唯一確定 \\(3)\times: b_1+b_2=f(-b/3)+g(b/3) 與常數項d相關, 無法唯一決定 \\(4) \bigcirc: a_1=a_2 \Rightarrow -{b\over 3}={b\over 3} \Rightarrow b=0\Rightarrow \cases{b_1= f(0)= d\\ b_2=g(0)=d} \Rightarrow b_1=b_2 \\(5)\times: 取\cases{b=3\\ c=1\\ d=0} \Rightarrow \cases{f(x)= x^3+3x^2+x\\ g(x)=-x^3+3x^2-x} \Rightarrow \cases{b_1=f(-1)=1\\ b_2=f(1)=1} \\\quad \Rightarrow我們得到一個反例: b_1=b_2=1, 但\cases{a_1=-1 \\a_2=1} \Rightarrow a_1\ne a_2\\,故選\bbox[red, 2pt]{(24)}$$
三、選填題(占 25 分)
解答:$${英檢碩士\over 英檢碩士+英檢學士} ={\displaystyle {3\over 4} \times {3\over 5} \over \displaystyle {3\over 4} \times {3\over 5}+ {1\over 4}\times {1\over 5}} = \bbox[red, 2pt]{9\over 10}$$
解答:$$L:y=bx-1 \Rightarrow 方向向量 (1,b) \Rightarrow (1,b)\cdot (a,b)=0 \Rightarrow a+b^2=0 \Rightarrow a=-b^2 \\ \Rightarrow a+b=-b^2+b=-(b^2-{1\over 2})^2+{1\over 4} \Rightarrow 最大值為 \bbox[red, 2pt]{1\over 4}$$
解答:$$d為公差又(a, \log (3a)), (b, \log(4b)), (c, \log(6c)) 在同一直線上 \Rightarrow {\log 4b-\log 3a\over b-a=d} ={\log 6c-\log 4b\over c-b =d}\\ \Rightarrow \log 4b-\log 3a=\log 6c-\log 4b \Rightarrow 2\log 4b=\log 3a+\log 6c \Rightarrow (4b)^2=3a\cdot 6c \\ \Rightarrow 8b^2=9ac =9a(2b-a) \Rightarrow 9a^2-18ab+8b^2=0 \Rightarrow 8r^2-18r+9 =0 \left( 取r={b\over a} \right) \\ \Rightarrow(2r-3)(4r-3) =0 \Rightarrow r= \bbox[red, 2pt]{3\over 2} \left( r={3\over 4} \Rightarrow a\gt b 不合 \right)ABCD面積= |\overrightarrow{AB}\times \overrightarrow{AD} |= \sqrt{(-5)^2+5^2+5^2}=5\sqrt 3$$
解答:$$P在\overline{AB}的中垂線(y軸)上, 因此P的x坐標為0 \Rightarrow y=1+2\cdot 0=1 \Rightarrow P(0,1) \Rightarrow \Gamma: y=a(x-0)^2+1 \\ B({1\over 2},0)代入\Gamma \Rightarrow 0={a\over 4}+1 \Rightarrow a=-4\Rightarrow y=-4a^2+1\\ 假設Q的x坐標為b, 又Q在直線y=1+2x 上\Rightarrow Q(b,1+2b) \Rightarrow \Gamma 平移後為\Gamma': y=-4(x-b)^2+1+2b \\B({1\over 2},0)代入\Gamma' \Rightarrow 0=-4({1\over 2}-b)^2+1+2b \Rightarrow 4b^2-6b=0 \Rightarrow b= {3\over 2} \;(b=0 \Rightarrow \Gamma=\Gamma') \\ \Rightarrow Q=({3\over 2},4) \Rightarrow \overline{PQ} =\sqrt{{9\over 4}+9} = \bbox[red, 2pt]{3\sqrt 5\over 2}$$
解答:
$$假設\angle ACD = \theta \Rightarrow \angle BCD=2\theta \Rightarrow \angle ACD=3\theta\Rightarrow \cases{\overline{AD} =\overline{AC} \tan \theta\\ \overline{CD} = \overline{AC}/ \cos \theta\\ \overline{AB}= \overline{AC}\tan 3\theta\\ \overline{BC} =\overline{AC} /\cos 3\theta} \\ 已知\overline{BC} =2\overline{BD} =2(\overline{AB}-\overline{AD})\Rightarrow {\overline{AC} \over \cos 3\theta} =2(\overline{AC}\tan 3\theta-\overline{AC} \tan \theta)\\ \Rightarrow {1\over 2\cos 3\theta}=\tan 3\theta-\tan \theta ={\sin 3\theta\over \cos 3\theta} -{\sin \theta\over \cos \theta} ={\sin(3\theta-\theta) \over \cos3\theta \sin \theta} ={2\sin \theta\cos \theta\over \cos 3\theta \sin \theta} \Rightarrow \sin \theta={1\over 4} \\ 又\overrightarrow{AD} =k\overrightarrow{AB} \Rightarrow k={\overline{AD}\over \overline{AB}} ={\overline{AC}\tan \theta\over \overline{AC}\tan 3\theta} ={\tan \theta\over \tan 3\theta} ={\tan \theta\over \tan \theta\cdot {3-\tan^2\theta\over 1-3\tan^2 \theta}} ={1-3\tan^2 \theta\over 3-\tan^2\theta} \\={1-} \\={1-3\cdot {1\over 15} \over 3-{1\over 15}} = \bbox[red, 2pt]{3\over 11}$$
第貳部分、混合題或非選擇題(占 15 分)
解答:$$ABCD面積= |\overrightarrow{AB}\times \overrightarrow{AD} |= \sqrt{(-5)^2+5^2+5^2}=5\sqrt 3,故選\bbox[red, 2pt]{(3)}$$
解答:$$平面ABCD的法向量= \overrightarrow{AB} \times \overrightarrow{AD} =(-5,5,5) \Rightarrow 方程式:-5(x-1)+5(y-2)+5(z-0)=0 \\ \Rightarrow \bbox[red, 2pt]{x -y-z+1=0}$$
解答:$$體積V= \sqrt{ \begin{Vmatrix}-5&5& 5\\ -2&0&-4\\6&-10&-8 \end{Vmatrix}} =\sqrt{100}= \bbox[red, 2pt]{10}\\ \Rightarrow \cases{ \overrightarrow{AB} = {(6,-10,-8) \times (-5,5,5) \over V} =(-1,1,-2) \\ \overrightarrow{AD} = { (-5,5,5) \times (-2,0,-4)\over V} =(-2,-3,1) \\ \overrightarrow{AP} = {(-2, 0,-4) \times (6,-10,-8) \over V} =(-4,-4,2) } \Rightarrow \cases{| \overrightarrow{AB}|^2=6 \\| \overrightarrow{AD}|^2=14 \\| \overrightarrow{AP}|^2=36 } \Rightarrow \cases{| \overrightarrow{AB}+ \overrightarrow{AD}|^2=14 \\| \overrightarrow{AB}+ \overrightarrow{AP}|^2=34 \\| \overrightarrow{AD}+ \overrightarrow{AP}|^2=94\\| \overrightarrow{AB}+ \overrightarrow{AD}+ \overrightarrow{AP}|^2=86 } \\ \Rightarrow 94最大\Rightarrow 最長距離=\bbox[red, 2pt]{\sqrt{94}}$$
====================== END ==========================解題僅供參考,其他升大學試題及詳解






















沒有留言:
張貼留言