2018年4月7日 星期六

101年大學指考數學甲詳解


101 學年度指定科目考試試題
數學甲

一、單選題


解:
$$\int _{ 0 }^{ a }{ f'\left( x \right) dx } =f\left( a \right) -f\left( 0 \right) =f\left( a \right) =0\Rightarrow a\left( a-1 \right) \left( a^{ 3 }-2 \right) =0 \Rightarrow a=0,1,\sqrt [ 3 ]{ 2 } $$共有三個解,故選\(\bbox[red,2pt]{(3)}\)




解:
行政人員有大學文憑的比率為\(0.15\times 0.6=0.09\)
技術人員有大學文憑的比率為\(0.35\times 0.4=0.14\)
研發人員有大學文憑的比率為\(0.5\times 0.8=0.4\)
因此有大學文憑的比率為0.09+0.14+0.4=0.63
有大學文憑的技術人員占全體有大學文憑的比率為\(\frac{0.14}{0.63}=\frac{2}{9}\)
故選\(\bbox[red,2pt]{(1)}\)



解:
$$p_{ A }+p_{ B }+p_{ C }=1\Rightarrow \log _{ 2 }{ a } +\log _{ 4 }{ a } +\log _{ 8 }{ a } =1\Rightarrow \left( 1+\frac { 1 }{ 2 } +\frac { 1 }{ 3 }  \right) \log _{ 2 }{ a } =1\\ \Rightarrow \frac { 11 }{ 6 } \log _{ 2 }{ a } =1\Rightarrow \log _{ 2 }{ a } =\frac { 6 }{ 11 } $$
故選\(\bbox[red,2pt]{(2)}\)




解:
$$A=\left[ \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right] \Rightarrow \left[ \begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right] A=\left[ \begin{array}{ccc} g & h & i \\ a & b & c \\ d & e & f \end{array} \right] ,又\left[ \begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right] ^{ -1 }=\left[ \begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right] \\ 由上二式可得AA^{ -1 }=I\Rightarrow \left[ \begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right] AA^{ -1 }=\left[ \begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right] I\\ \Rightarrow \left[ \begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right] AA^{ -1 }\left[ \begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right] =\left[ \begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right] I\left[ \begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right] =I\\ \Rightarrow \left[ \begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right] A的反矩陣為A^{ -1 }\left[ \begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right] \\ \Rightarrow \left[ \begin{array}{ccc} g & h & i \\ a & b & c \\ d & e & f \end{array} \right] 的反矩陣為A^{ -1 }\left[ \begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right] =\left[ \begin{array}{ccc} a' & b' & c' \\ d' & e' & f' \\ g' & h' & i' \end{array} \right] \left[ \begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right] =\left[ \begin{array}{ccc} c' & a' & b' \\ f' & d' & e' \\ i' & g' & h' \end{array} \right] $$
故選\(\bbox[red,2pt]{(5)}\)



解:
\(2x+y=3\Rightarrow y=3-2x\Rightarrow K=9^x+3^y=9^x+3^{3-2x}=9^x+\frac{3^3}{3^{2x}}=9^x+\frac{27}{9^x}\ge2\sqrt{9^x\times\frac{27}{9^x}}=6\sqrt{3}\),因此K有最小值\(6\sqrt{3}\);
又\(\lim _{ x\rightarrow \infty  }{ \left( 9^{ x }+\frac { 27 }{ 9^{ x } }  \right)  } =\lim _{ x\rightarrow \infty  }{ \left( 9^{ x } \right)  } +\lim _{ x\rightarrow \infty  }{ \left( \frac { 27 }{ 9^{ x } }  \right)  } =\infty +0\),因此K沒有最大值
故選\(\bbox[red,2pt]{(4)}\)

二、多選題


解:
\(x^2-a=0\Rightarrow   x=\pm\sqrt{a}\Rightarrow   \sin{\theta}=\sqrt{a}  ,\cos{\theta}=-\sqrt{a}\)或\(\sin{\theta}=-\sqrt{a}  ,\cos{\theta}=\sqrt{a}\)
(1)\(\times:\tan{\theta}=\frac{\sin{\theta}}{\cos{\theta}}=-1\)
(2)\(\bigcirc: \sin^2{\theta}+\cos^2{\theta}=1\Rightarrow a+a=1\Rightarrow a=\frac{1}{2} \Rightarrow \theta =\frac{3\pi}{4}\;\text{or}\;\frac{7\pi}{4}\)
\(\quad\quad\Rightarrow \sin{\theta+\frac{\pi}{4} }=\sin{\pi}\;\text{or}\;\sin{2\pi}=0\)
(3)\(\bigcirc: \sin{2\theta}=2\sin{\theta}\cos{\theta}=2\times\frac{-1}{\sqrt{2}}\times\frac{1}{\sqrt{2}}=-1\)
(4)\(\bigcirc: \)理由如(2)
(5)\(\times: \theta=\frac{3\pi}{4}\quad\text{or}\quad \theta=\frac{7\pi}{4}\),\(\theta\)有兩個
故選\(\bbox[red,2pt]{(2,3,4)}\)



解:
由於G為重心,所以\(\vec{GA}+\vec{GB}+\vec{GC}=0\)$$\left( 1 \right) \bigcirc :\vec { OD } =\vec { OA } +\vec { OB } +\vec { OC } =\left( \vec { OG } +\vec { GA }  \right) +\left( \vec { OG } +\vec { GB }  \right) +\left( \vec { OG } +\vec { GC }  \right) \\ =3\vec { OG } +\left( \vec { GA } +\vec { GB } +\vec { GC }  \right) =3\vec { OG } \Rightarrow \vec { OD } =3\vec { OG } \Rightarrow O,G,D共線\\ \left( 2 \right) \times :由(1)可知\vec { OD } =3\vec { OG } \Rightarrow \overline { OD } =3\overline { OG } \\ \left( 3 \right) \bigcirc :\vec { OD } =\vec { OA } +\vec { OB } +\vec { OC } =\left( \vec { OD } -\vec { AD }  \right) +\left( \vec { OD } -\vec { BD }  \right) +\left( \vec { OD } -\vec { CD }  \right) \\ =3\vec { OD } -\left( \vec { AD } +\vec { BD } +\vec { CD }  \right) \Rightarrow \vec { AD } +\vec { BD } +\vec { CD } =2\vec { OD } \\ \left( 4 \right) \bigcirc :重心一定在內部\\ \left( 5 \right) \times :資料不足,無法判定$$
故選\(\bbox[red,2pt]{(1,3,4)}\)

三、選填題


解:
(1)\(\times\):  1<x<4時,f''(x)>0表示f'(x)在此區間遞增,因此f'(2)<f'(3);
(2)\(\bigcirc\): f'(1<x<4)<0, f'(x>4)>0,表示f(4)有最小值
(3)\(\times\):  f''(0)=f''(1)=0,有兩個反曲點
(4)\(\times\):三次式最多只有一個反曲點
(5)\(\bigcirc\):x>4後,f(x)越來越大,所以最高次項係數為正
答:\(b=\bbox[red,2pt]{(2,5)}\)




解:

(1)正確:兩四面體相交於P、Q兩點,P=(1,1,2),Q=(2,1,1)
(2)正確:\(\vec{PQ}=(2,1,1)-(1,1,2)=(1,0,-1)\)
(3)正確:\(\triangle   PBC\bot\triangle   QBC\)
(4)錯誤:\(\overline{PQ}=\sqrt{2}=\overline{BP}=\overline{BQ}\Rightarrow   \triangle   BPQ\)為正三角形;同理\(\overline{PQ}=\sqrt{2}=\overline{PC}=\overline{QC}\Rightarrow   \triangle  CPQ\)為正三角形;因此有兩個正三角形
(5)錯誤:\(\triangle   BCQ\)面積=1,P至\(\overline{BC}\)的距離為1,因此體積=\(\frac{1}{3}\times   1\times   1=\frac{1}{3}\)
故選:\(\bbox[red,2pt]{(1,2,3)}\)




解:
x軸=\((k, 0 ,0), k\in R\)
(0,0,0)代入方程組可得b=e=0;又以(1,0,0)代入第1式可得a=b=0;
由$$\begin{cases} 3y+5z=0 \\ y+cz=0 \end{cases}\Rightarrow c=\frac { 5 }{ 3 } $$
答:\(a=\bbox[red,2pt]{0},b=\bbox[red,2pt]{0},c=\bbox[red,2pt]{\frac { 5 }{ 3 }}\)

第貳部份 :非選擇題


解:
$$\vec { AC } \cdot \vec { AE } =\left( \vec { AB } +\vec { AD }  \right) \cdot \left( \vec { AB } +\vec { AF }  \right) ={ \left| \vec { AB }  \right|  }^{ 2 }+\vec { AB } \cdot \vec { AF } +\vec { AD } \cdot \vec { AB } +\vec { AD } \cdot \vec { AF } \\ =16+0+0+11=27$$
答:\(\bbox[red,2pt]{27}\)



解:
$$\left( 1 \right) \lim _{ n\rightarrow \infty  }{ a_{ n } } =\lim _{ n\rightarrow \infty  }{ \frac { f\left( n \right)  }{ n^{ 4 } }  } =5\Rightarrow f\left( n \right) =5n^{ 4 }+a_{ 3 }n^{ 3 }+a_{ 2 }n^{ 2 }+a_{ 1 }n+a_{ 0 }\\ \Rightarrow f的次數\bbox[red,2pt]{4},最高次項係數為\bbox[red,2pt]{5}\\ \left( 2 \right) a_{ n }=\frac { f\left( n \right)  }{ n^{ 4 } } \Rightarrow f\left( n \right) =n^{ 4 }\times a_{ n }\Rightarrow f\left( 0 \right) =0\Rightarrow a_{ 0 }=0\\ \lim _{ x\rightarrow 0 }{ \frac { f\left( x \right)  }{ x }  } =3\Rightarrow f'\left( 0 \right) =3\Rightarrow a_{ 1 }=3\\ 假設切線方程式為y=mx+b,經過\left( 0,f\left( 0 \right)  \right) ,且斜率為f'\left( 0 \right) =3\\ 因此該方程式為\bbox[red,2pt]{y=3x}\\ \left( 3 \right) f''\left( 0 \right) =2\Rightarrow 2a_{ 2 }=2\Rightarrow a_{ 2 }=1\Rightarrow \int _{ -1 }^{ 1 }{ f\left( x \right)  } dx=\int _{ -1 }^{ 1 }{ 5x^{ 4 }+a_{ 3 }x^{ 3 }+x^{ 2 }+3x } dx\\ =\left. \left[ x^{ 5 }+\frac { a_{ 3 } }{ 4 } x^{ 4 }+\frac { 1 }{ 3 } x^{ 3 }+\frac { 3 }{ 2 } x^{ 2 } \right]  \right| ^{ 1 }_{ -1 }=\left( \frac { 17 }{ 6 } +\frac { a_{ 3 } }{ 4 }  \right) -\left( \frac { 1 }{ 6 } +\frac { a_{ 3 } }{ 4 }  \right) =\bbox[red,2pt]{\frac { 8 }{ 3 }} $$


解:

$$\left( 1 \right) \overline { AD } 平分\angle BAC\Rightarrow \frac { \overline { AB }  }{ \overline { AC }  } =\frac { \overline { BD }  }{ \overline { DC }  } =\frac { 5 }{ 7 } \Rightarrow \overline { AB } =5a,\overline { AC } =7a\\ \Rightarrow \frac { \overline { AC }  }{ \sin { \angle ABC }  } =\frac { \overline { AB }  }{ \sin { \angle ACB }  } \Rightarrow \frac { 7a }{ \frac { \sqrt { 3 }  }{ 2 }  } =\frac { 5a }{ \sin { \angle ACB }  } \\ \Rightarrow \sin { \angle ACB } =\frac { 5\times \frac { \sqrt { 3 }  }{ 2 }  }{ 7 } = \bbox[red,2pt]{\frac { 5\sqrt { 3 }  }{ 14 }} \\ \left( 2 \right) \cos { \angle ABC } =\frac { { \overline { AB }  }^{ 2 }+{ \overline { BC }  }^{ 2 }-{ \overline { AC }  }^{ 2 } }{ 2\times \overline { AB } \times \overline { BC }  } \Rightarrow \frac { 1 }{ 2 } =\frac { 25a^{ 2 }+12^{ 2 }-49a^{ 2 } }{ 120a } \\ \Rightarrow 2a^{ 2 }+5a-12=0\Rightarrow \left( 2a-3 \right) \left( a+4 \right) =0\Rightarrow a=\frac { 3 }{ 2 } ,-4\left( 負值不合 \right) \\ \Rightarrow \frac { \overline { BC }  }{ \sin { \angle BAC }  } =\frac { \overline { AC }  }{ \sin { \angle ABC }  } \Rightarrow \frac { 12 }{ \sin { \angle BAC }  } =\frac { 7a }{ \frac { \sqrt { 3 }  }{ 2 }  } =\frac { 7\times \frac { 3 }{ 2 }  }{ \frac { \sqrt { 3 }  }{ 2 }  } \\ \Rightarrow \sin { \angle BAC } =\frac { 6\sqrt { 3 }  }{ \frac { 21 }{ 2 }  } =\bbox[red,2pt]{\frac { 4\sqrt { 3 }  }{ 7 }} \\ \left( 3 \right) \overline { AB } =5a=5\times \frac { 3 }{ 2 } =\bbox[red,2pt]{\frac { 15 }{ 2 }} $$

沒有留言:

張貼留言