臺北市109學年度市立國民中學正式教師
聯合甄選數學科(一般)題本
貳、專業科目聯合甄選數學科(一般)題本
選擇題: 共 40 題,每題 1.5 分
解:
$$24+A =25+B =26+C=17+A+B+C \Rightarrow \cases{B+C=7 \\ A+C=8 \\ A+B=9} \Rightarrow \cases{A=5\\ B=4\\ C=3}\\ \Rightarrow A+B+C=12,故選\bbox[red, 2pt]{(D)}$$
解:
$$\cases{11 < \sqrt a < 12 \\ 9 < \sqrt b < 10} \Rightarrow \cases{121 < a < 144 \\ 81 < b < 100} \Rightarrow 202 < a+b < 244 \Rightarrow \sqrt{202} < a+b < \sqrt{244} \\ \Rightarrow 14\le 整數(a+b)\le 15,故選\bbox[red, 2pt]{(B )}$$
解:
$$(5+2)\times 7 =(35+14) =49 \Rightarrow 49杯只要付35杯的錢\Rightarrow 50杯要付36杯的錢=720元,故選\bbox[red, 2pt]{( A)}$$
解:
$$令水深\overline{OB}=a \Rightarrow \overline{OC}=\overline{OA}=40+a \Rightarrow 直角\triangle BOC: 80^2+ a^2=(40+a)^2 \Rightarrow 80a =80^2-40^2 \\ \Rightarrow a=80-20=60,故選\bbox[red, 2pt]{(B )}$$
解:
$$\cases{534的數字根=5+3+4=12=1+2=3 \\ 641的數字根=6+4+1=11=1+1=2 \\ 198的數字根=1+9+8=18=1+8=9}\\ \Rightarrow 534\times 641+198的數字根=3\times 2+9 =15=1+5=6,故選\bbox[red, 2pt]{(A )}$$
解:
$$\cases{A(0,a)\\ B(0,a+6) \\ C(\sqrt{a+3},a+3)} \Rightarrow \overline{AC}=6 \Rightarrow a+3+9=36 \Rightarrow a=24,故選\bbox[red, 2pt]{(B)}$$
解:
$$由{a+b \over 2} \ge \sqrt {ab}可知:當a與b越接近,其a+b越小;\\ 111555= 3^2\times 5\times 37\times 67 = (3^2\times 37) \times (5\times 67) = 333 \times 335 =a \times b\\ \Rightarrow 周長=2(a+b)= 2(333+335) =1336,故選\bbox[red, 2pt]{(B )}$$
解:
$$只要數字是平方數,如:1,2^2,3^2,4^2,...,44^2=1936,共44個,故選\bbox[red, 2pt]{(C)}$$
解:
$$作\overline{AC} \bot \overline{BP}(見上圖) \Rightarrow \cases{\angle BAC=60^\circ \\ \overline{OA} \bot \overline{AP} \\ \angle OAB=\angle OBA=30^\circ} \Rightarrow \angle CAP=60^\circ \Rightarrow \angle P=30^\circ\\ \Rightarrow \triangle ABC \cong \triangle APC \Rightarrow \overline{CP}= \overline{BP}\div 2=6 \Rightarrow \overline{AP} ={2\over \sqrt 3}\overline{CP} ={12\over \sqrt 3} =4\sqrt 3,故選\bbox[red, 2pt]{( B)}$$
解:
$$\cases{小圓半徑=r\\ \angle QAC=45^\circ} \Rightarrow \overline{AP}=\sqrt 2 r \Rightarrow 大圓半徑=\overline{AQ} = \overline{AP} +\overline{PQ} =\sqrt 2r + r=(\sqrt 2+1)r \\ \Rightarrow \cases{四分之一大圓面積={1\over 4}(\sqrt 2+1)^2r^2\pi \\ 小圓面積=r^2\pi } \Rightarrow k= {{1\over 4}(\sqrt 2+1)^2r^2\pi \over r^2\pi} ={(\sqrt 2+1)^2 \over 4} = {3+2\sqrt 2\over 4}\\ \approx {3+2\times 1.414\over 4}=1.457,故選\bbox[red, 2pt]{(B )}$$
解:
$$作\cases{正六邊形的邊長=a\\ 正六邊形的對角線交點為O\\ \overline{EM} \bot \overline{AQ}},見上圖;\\ \triangle OED為一正\triangle \Rightarrow \overline{EM}= {\sqrt 3a \over 2},又{\overline{EM} \over \overline{RN}} ={\overline{AE} \over \overline{AR}} = {1\over 2} \Rightarrow \overline{RN}=2\overline{EM} =\sqrt 3a \Rightarrow \overline{AN} =\sqrt 3\overline{RN} =3a \\ \Rightarrow \overline{DN} = \overline{AN}-\overline{AD} =3a-2a=a \Rightarrow \overline{QN} = \overline{DQ}-\overline{DN} = \overline{AD}-\overline{DN}=2a-a=a\\ \Rightarrow \cases{正六邊形ABCDEF面積 =6\times {\sqrt 3\over 4}a^2 ={3\sqrt 3\over 2}a^2 \\ \triangle PQR面積= {1\over 2}\overline{RP}\times \overline{NQ} = \overline{RN}\times \overline{NQ} =\sqrt 3a^2} \Rightarrow 比值={{3\sqrt 3\over 2}a^2\over \sqrt 3a^2} ={3\over 2},故選\bbox[red, 2pt]{( A)}$$
解:
$$\overline{AP}=a \Rightarrow \overline{BP}=\sqrt{a^2+1} = \overline{BQ} \Rightarrow \overline{QC}=a \Rightarrow 等腰\triangle DPQ:\cases{\overline{PQ}=\overline{DQ}=1-a \\ \overline{PQ}=\sqrt{a^2+1}} \\ \Rightarrow a^2+1= 2(1-a)^2 \Rightarrow a^2-4a+1=0 \Rightarrow a=2-\sqrt 3 (2+\sqrt 3 >1,不合) \\\Rightarrow 正\triangle 面積= {\sqrt 3\over 4}\overline{BP}^2 = {\sqrt 3\over 4}(a^2+1) = {\sqrt 3\over 4}((2-\sqrt 3)^2+1) = {\sqrt 3\over 4}(8-4\sqrt 3) =2\sqrt 3-3\\,故選\bbox[red, 2pt]{(A)}$$
解:
$$\triangle AGF \Rightarrow \overline{AG}=2\overline{GF}=2r=2 \Rightarrow \overline{AD}=2r+r+R=3r+R\\ 又{\overline{AG} \over \overline{AD}} ={\overline{GF} \over \overline{DE}} \Rightarrow {2r\over 3r+R}= {r\over R} \Rightarrow {2\over 3+R} ={1\over R} \Rightarrow R=3 \Rightarrow \overline{AD}=3+3=6 \Rightarrow \overline{DC} ={6\over \sqrt 3} \\ \Rightarrow \triangle ABC 面積= \overline{AD}\times \overline{DC} =6\times {6\over \sqrt 3}=12\sqrt 3,故選\bbox[red, 2pt]{(B)}$$
解:
$$\cases{A(a,3) \\B(1,1) \\C(-2,-1)} \Rightarrow \cases{\overrightarrow{AB}=(1-a,-2) \\ \overrightarrow{BC}=(-3,-2)} \Rightarrow {1-a\over -3}={-2\over -2} \Rightarrow a=4,故選\bbox[red, 2pt]{(D)}$$
解:
$$\cases{L_1:x+3y-1=0 \\ L_2:x-y+3=0} \Rightarrow L_1,L_2交點(-2,1)代入L_3:2x+ky+1=0 \Rightarrow -4+k+1=0 \\ \Rightarrow k=3,故選\bbox[red, 2pt]{(C)}$$
解:
$$f(x)=x^4+ 7x^3+19x^2+8x+14 = a(x+1)^4 +b(x+1)^3 +c(x+1)^2+d(x+1)+e\\ \Rightarrow f(0)=14=a+b+c+d+e,故選\bbox[red, 2pt]{(A)}$$
解:
$$f(1)=f(2)=0 \Rightarrow x=1,2為f(x)=0的二根\Rightarrow f(x)=(x-1)(x-2)(ax+b)\\ 又\cases{f(3)=8 \\ f(0)=2} \Rightarrow \cases{2\times 1\times (3a+b)=8 \\ (-1)\times (-2)\times b=2} \Rightarrow \cases{b=1\\ 2(3a+1)=8} \Rightarrow a=1 \\\Rightarrow f(4)=3\times 2\times (4a+b) =6\times 5=30,故選\bbox[red, 2pt]{(C)}$$
解:
$$y=ax^2+ bx+1 = a(x^2+{b\over a}x +{b^2\over 4a^2})+1-{b^2\over 4a} =a(x+{b\over 2a})^2+ {4a-b^2\over 4a} \\ \Rightarrow \cases{-{b\over 2a}=-1 \\ -{2\over a}= {4a-b^2\over 4a}} \Rightarrow \cases{b=2a\\ -8=4a-b^2} \Rightarrow -8=4a-4a^2 \Rightarrow a^2-a-2=0 \Rightarrow (a-2)(a+1)=0 \\ \Rightarrow a=2(-1違背y有最小值),故選\bbox[red, 2pt]{(C)}$$
解:
$$x^2+6x+4=0 \Rightarrow \cases{\alpha=-3+\sqrt 5\\ \beta=-3-\sqrt 5} \Rightarrow (\sqrt \alpha+\sqrt \beta)^2 =\left( \sqrt{-3+\sqrt 5} +\sqrt{-3-\sqrt 5} \right)^2 \\=\left( \sqrt{-3+\sqrt 5} +\sqrt{3+\sqrt 5}i \right)^2 =(-3+\sqrt 5)-(3+\sqrt 5) +2\sqrt{5-9}i \\ =-6+2\sqrt{-4}i =-6-2\sqrt 4 =-10,故選\bbox[red, 2pt]{(A)}$$
解:
$$\cases{A(0,3)\\ B(4,1)} \Rightarrow 圓心O(2,2) \Rightarrow \overrightarrow{OP}=(1,2) 為切線的法向量 \Rightarrow 切線方程式: (x-3)+2(y-4)=0 \\\Rightarrow x+2y-11=0,故選\bbox[red, 2pt]{(A)}$$
解:
$$Y= -3X+10 \Rightarrow \bar y=-3\bar x+10 \Rightarrow -20=-3\bar x+10 \Rightarrow \bar x=10,故選\bbox[red, 2pt]{(A)}$$
解:
$$(A)\times: P(X< 60)= P(X< \bar x+s) =0.5+ 0.6826\div 2=0.8413 \\\qquad \Rightarrow 人數=300\times 0.8413\approx 252\ne 150\\ (B)\bigcirc: 300-252=48 \\ (C)\bigcirc:70=\bar x+2s \Rightarrow P(X< \bar x+2s)= 1-(1-0.9544)\div 2=0.9772 \\\qquad \Rightarrow 人數=300\times 0.9772 \approx 293 \\ \qquad \Rightarrow 符合排名前8 \\(D)\bigcirc: P(60\le X\le 70) =P(X\le 70)- P(X\le 60)=0.9772-0.8413= 0.1359 \\\qquad \Rightarrow 人數=300\times 0.1359=40.77\\,故選\bbox[red, 2pt]{(A)}$$
解:
解:
解:
解:
解:
解:
解:
解:
解:
解:
解:
解:
解:
解:
解:
解:
解:
解:
解:
解:
解:
解:
解:
解:
解:
解:
解:
$$\cases{(A)|-1.001| > 1\\ (B){n+2 \over n+1} > 1\\(C) {\pi \over 3}> 1\\(D) {\pi \over 4}< 1},故選\bbox[red, 2pt]{(D)}$$
解:
$$f(n)1+2+3+ \cdots +n=n(n+1) \div 2 \Rightarrow \cases{f(14)=105 \\ f(13)=91} \\ \Rightarrow 第92項起:{14\over 1},{13\over 2}, {12\over 3},\dots,{1\over 14}(第105項) \Rightarrow 第100項為{6\over 9},故選\bbox[red, 2pt]{(D)}$$
解:
$$\cases{小華a公尺 \\小明領先小華10公尺 \\小經領先小華3公尺 } \Rightarrow \cases{小明a+10公尺\\ 小經a+3公尺 \\ 小安領先小經4公尺} \Rightarrow 小安a+3+4=a+7 \\\Rightarrow 小明領先小安(a+10)-(a+7)=3公尺,故選\bbox[red, 2pt]{( A)}$$
解:
$$\cases{草莓重a \\ 芒果重b\\ 梅子重c} \Rightarrow \cases{3a+b= 10c\cdots(1) \\a+b=6c\cdots(2)} \Rightarrow (2)代入(1) \Rightarrow 3(6c-b)+b=10c \Rightarrow b=4c\\ \Rightarrow c:b=1:4,故選\bbox[red, 2pt]{( A)}$$
解:
$$\cases{第1段a\\ 第2段b\\ 第3段450-a-b} \Rightarrow \cases{a+b=350\\ b+(450-a-b)=250} \Rightarrow \cases{a=200 \\b=150},即第2段b=150,故選\bbox[red, 2pt]{( C)}$$
解:
$$\cases{大紙杯:3m\\ 小紙杯:2m \\ 大桶:5n\\ 小桶:3n \\3n=3m\times 20} \Rightarrow n=20m \Rightarrow 大桶5n=100m= 2m\times 50,故選\bbox[red, 2pt]{( C)}$$註:本題大,小剛好相反誤植
解:
$$原來冰箱有\cases{可樂a罐\\ 紅茶b罐} \Rightarrow \cases{a:b-10=5:3 \\ a-25:b-10=5:6} \Rightarrow 5(b-10)=3a=6(a-25) \\\Rightarrow 3a =6(a-25) \Rightarrow a=50 \Rightarrow 5(b-10)=150 \Rightarrow b=40 \Rightarrow a-b=10,故選\bbox[red, 2pt]{(C)}$$
解:
$$\angle 1與\angle 4無關任何\triangle,即\angle 1+\angle 4=180^\circ \Rightarrow 平角=180^\circ,故選\bbox[red, 2pt]{(B)}$$
解:
$$(A)\times: a=\pm 2 \\(B)\times: a=\pm 5 \\(D)\times a=-3 \Rightarrow a^2=9 \not \lt 4\\,故選\bbox[red, 2pt]{(C)}$$
解:
$$(A)\times: \cases{a=\sqrt 2\\b=-\sqrt 2} \Rightarrow a+b=0為有理數 \\(B)\times: \cases{a=\sqrt 2\\b=\sqrt 2} \Rightarrow ab= 2為有理數 \\(C)\times \cases{a=\sqrt 2\\b=\sqrt 2} \Rightarrow a/b= 1為有理數\\,故選\bbox[red, 2pt]{(D)}$$
解:
$$a=7b+4 \Rightarrow 2a+1=2(7b+4)+1 = 14b+9 = 7(2b+1)+2 \Rightarrow 餘數為2,故選\bbox[red, 2pt]{(B)}$$
解:
$${\overline{PB} \over \overline{AB}}={2 \over 3} \Rightarrow P({2\cdot (-4)+(-1)\over 3},{2\cdot 3+9 \over 3})=(-3,5) \Rightarrow \overline{P,(-2,4)} =\sqrt{1^2+1^2}=\sqrt 2\\,故選\bbox[red, 2pt]{( B)}$$
解:
$$f(x)=a(x+3)^2-9a+2 的最大值為-9a+2=20 \Rightarrow a=-2,故選\bbox[red, 2pt]{( A)}$$
解:
$$直角\triangle外接圓半徑=12\div 2=6 \Rightarrow 斜邊中點(圓心)至直角頂點的長度=半徑=6,故選\bbox[red, 2pt]{(C)}$$
解:
$$\cases{a>b \\ ab<0} \Rightarrow \cases{a>0 \\ b<0} \Rightarrow \cases{\sqrt {a^2}=a \\ \sqrt {b^2} =-b} \Rightarrow \sqrt {a^2} =\sqrt {b^2} =a-b,故選\bbox[red, 2pt]{(B)}$$
解:
$$y=0 \Rightarrow (x-6)(x+2)=0 \Rightarrow x_1=6,x_2=-2 \Rightarrow |x_1-x_2|=8,故選\bbox[red, 2pt]{(D)}$$
解:
$$\cases{x= {360\div 12=30} \\ y=360\div 60=6\\ z=360\div 60=6} \Rightarrow x:y:z = 5:1:1,故選\bbox[red, 2pt]{( C)}$$
解:
$$該直角\triangle若為等腰,則斜邊上的高等於半徑長,故選\bbox[red, 2pt]{(D )}$$
解:
$$令g(x)=x^2-x+1 \Rightarrow \cases{3x^2-2x+5 =3g(x)+(x+2) \\ 2x^3-5=(2x+2)g(x)-7} \\ \Rightarrow g(x)(3x^2-2x+5)+(2x^3-5) = g(x)(3(gx)+(x+2))+(2x+2)g(x)-7 \\ =3g^2(x)+(3x+4)g(x)-7 \Rightarrow 餘式為-7,故選\bbox[red, 2pt]{( A)}$$
解:
$$100\div 3=33 \Rightarrow 33\div 3=11 \Rightarrow 11\div 3=3(取整數) \Rightarrow 3\div 3=1 \Rightarrow 33+11+3+1=48\\,故選\bbox[red, 2pt]{(D)}$$
解:
$$\cases{f(x)=x^2+bx+c \Rightarrow 圖形凹向上\\ f(x+8)=f(4-x) \Rightarrow f((8+4)\div 2)=f(6)為極值} \Rightarrow \cases{f(6)為極小值\\ 圖形對稱x=6} \\\Rightarrow f(2) > f(4)=f(8),故選\bbox[red, 2pt]{(B)}$$
解:
$$二獎、三獎都被抽光後(8+10=18),再抽一名就保證是頭獎,故選\bbox[red, 2pt]{(D)}$$
解:
$$y=3x^2 \xrightarrow{右移2}y=3(x-2)^2 \xrightarrow{上移5}y=3(x-2)^2+5,故選\bbox[red, 2pt]{(A)}$$
解:
$$六角錐\cases{頂點數=6+1=7 \\面數=6+1=7 \\ 稜邊數=2\times 6= 12 \\} \Rightarrow 7+7+12=26,故選\bbox[red, 2pt]{(B)}$$
解:
$$\cases{綠色的一半=4/2=2 \\ 棕色的一半=6/2=3 \\ 黃色的一半=2/2=1 \\ 紫色的一半=2/2=1\\ 中間白色=5} \Rightarrow ABCD面積= 2+3+1+1+5= 12,故選\bbox[red, 2pt]{( C)}$$
解:
$$\cases{數量M件\\ 成本a元} \Rightarrow 賣出0.7M件,每件獲利0.5a元,共獲0.35aM元;\\原預期獲利0.5aM元,最後獲利0.82\%\times 0.5aM = 0.41aM元\\ \Rightarrow 打折後獲利0.41aM-0.35aM= 0.06aM;\\假設打b折,即打折後的售價為1.5a\times b = 1.5ab元\Rightarrow 打折後獲利 0.3M(1.5ab -a)=0.06aM \\ \Rightarrow 1.5ab-a=0.2a \Rightarrow 1.5ab = 1.2a \Rightarrow b=0.8,即八折,故選\bbox[red, 2pt]{(C)}$$
解:
$$由A、B、C、D坐標可知四邊形ABCD為一長方形,其中心坐標為Q(20/4,12/4)=(5,3)\\,直線y=m(x-7)+4必經P(7,4),因此該直線即為\overleftrightarrow{PQ},其斜率為{4-3\over 7-5}=0.5,故選\bbox[red, 2pt]{(C)}$$
-- END (僅供參考) --
朱老師您好,第70題因a,b<0,故答案已修正為A
回覆刪除謝謝,已修訂
刪除