高雄區公立高中 109 學年度聯合招考轉學生
高2升高3數學科試題
選擇題: 共 40 題,總分 100 分,每題 2.5 分高2升高3數學科試題
解:
$$\begin{vmatrix}3c-2e & 3d-2f \\ 4a & 4b\end{vmatrix}=-\begin{vmatrix}4a & 4b\\3c-2e & 3d-2f \end{vmatrix}=-\begin{vmatrix}4a & 4b\\3c & 3d \end{vmatrix}+\begin{vmatrix}4a & 4b\\2e & 2f \end{vmatrix}\\ =-12\begin{vmatrix}a & b\\c & d \end{vmatrix}+8\begin{vmatrix}a & b\\e & f \end{vmatrix}=-12\times 2+8\times 5=16,故選\bbox[red, 2pt]{(C)}$$
解:
$$((x+4)^2 +(y-5)^2+(z+6)^2)(3^2+2^2+5^2) \ge (3(x+4)+2(y-5)+5(z+6))^2\\ \Rightarrow 38((x+4)^2 +(y-5)^2+(z+6)^2) \ge (3x+2y+5z+32)^2=(6+32)^2=38^2 \\ \Rightarrow (x+4)^2 +(y-5)^2+(z+6)^2\ge 38,故選\bbox[red, 2pt]{(D )}$$
解:
$$((1-(-1))\times 5)\times (2\times 3)=10\times 6=60,故選\bbox[red, 2pt]{(A )}$$
解:
$$\cases{\overline{BN}=14 \\\overline{CN}=6\overline{BN} } \Rightarrow \cases{\overline{BN}=2 \\\overline{CN}=12 }\\ 令B(0,0,0)\Rightarrow \cases{N(2,0,0) \\ M(7,7,0) \\ A(0,0,14)} \Rightarrow \cases{\overline{AN}= 10\sqrt 2\\ \overline{AM} = 7\sqrt 6\\ \overline{MN}= \sqrt{74}} \Rightarrow \cos \theta = {\overline{AM}^2 +\overline{AN}^2-\overline{MN}^2 \over 2\times \overline{AM}\times \overline{AN}}\\ ={294\times 200-74 \over 140\sqrt {12}} ={420\over 280\sqrt 3} ={\sqrt 3\over 2 } \Rightarrow \theta=30^\circ,故選\bbox[red, 2pt]{(B )}$$
解:
$$\cases{E_1:2x-2y+z-3=0\\ E_2(xy平面):z=0} \Rightarrow \cases{\vec n_1=(2,-2,1)\\ \vec n_2=(0,0,1)} \Rightarrow \cos \theta = {\vec n_1\cdot \vec n_2\over |\vec n_1||\vec n_2|} ={1\over 3} \Rightarrow \sin \theta ={2\sqrt 2\over 3}\\,故選\bbox[red, 2pt]{(C )}$$
解:
$$橢圓:{x^2\over 25}+{y^2 \over 5} \Rightarrow \cases{a=5\\ b=\sqrt 5} \Rightarrow c=2\sqrt 5 \Rightarrow 焦點\cases{F_1(-2\sqrt 5,0) \\ F_2(2\sqrt 5,0)}\\ 雙曲線: \cases{c=2\sqrt 5\\ 2a=6 \Rightarrow a=3} \Rightarrow b=\sqrt{11} \Rightarrow {x^2\over a^2} -{y^2\over b^2}=1 \Rightarrow {x^2\over 9}-{y^2\over 11}=1,故選\bbox[red, 2pt]{(A )}$$
解:
$$依拋物線定義: \overline{AB} =\overline{AM}+\overline{BN} =9+4=13;又\overline{AC}=\overline{AM}-\overline{BN}=9-4=5;\\因此在直角\triangle ABC: \overline{AB}^2= \overline{AC}^2+\overline{BC}^2 \Rightarrow 13^2= 5^2+\overline{BC}^2 \Rightarrow \overline{BC}=12=\overline{MN},故選\bbox[red, 2pt]{( B)}$$
解:
$$\cases{E_1: x-2y+2z-5=0\\ E_2:2x+y+z+3=0} \Rightarrow \cases{\vec n_1=(1,-2,2)\\ \vec n_2=(2,1,1)} \Rightarrow \vec u= \vec n_1\times \vec n_2= (-4,3,5)\\ \Rightarrow 過A(1,-1,2)且法向量為\vec u的平面方程式:-4(x-1)+3(y+1)+5(z-2)=0 \\ \Rightarrow -4x+3y+5z=3 \Rightarrow 4x-3y-5z=-3,故選\bbox[red, 2pt]{(D )}$$
解:
$$假設\overline{OM}與\overline{AB}overline{AB}交於C,並令圓心D,圓半徑長為r,如上圖;\\直角\triangle OBC: \overline{OB}=240 \Rightarrow \cases{\overline{OC}=120\\ \overline{BC}=120\sqrt 3}\Rightarrow \overline{MC}=280-120=160;\\在直角\triangle BCD: r^2= \overline{CD}^2+ \overline{BC}^2= (\overline{MD}-\overline{MC})^2+(120\sqrt 3)^2 =(r-160)^2+(120\sqrt 3)^2\\\Rightarrow r=215 \Rightarrow \overline{OD}= 280-r=280-215=65,故選\bbox[red, 2pt]{( E)}$$
解:
$$\tan(\theta-\phi) = {\tan \theta-\tan \phi \over 1+\tan \theta \tan \phi}= {2-\tan \phi \over 1+2 \tan \phi}=3 \Rightarrow \tan \phi=-1/7,故選\bbox[red, 2pt]{( D)}$$
解:
$$(x-1)^2+(y-1)^2=1 \Rightarrow \cases{圓心O(1,1)\\ 半徑r=1} \Rightarrow h=\text{dist}(O,x+y=3)= {|1+1-3|\over \sqrt 2} ={1\over \sqrt 2} \\ \Rightarrow r^2=h^2+({\overline{AB}\over 2})^2 \Rightarrow 1={1\over 2}+({\overline{AB}\over 2})^2 \Rightarrow \overline{AB}=\sqrt 2,故選\bbox[red, 2pt]{( D)}$$
解:
$$轉移矩陣T=\begin{bmatrix}0.8 & 0.3 \\ 0.2& 0.7\end{bmatrix} ,穩定後\Rightarrow \begin{bmatrix}0.8 & 0.3 \\ 0.2& 0.7\end{bmatrix}\begin{bmatrix}甲 \\ 乙\end{bmatrix} =\begin{bmatrix}甲 \\ 乙\end{bmatrix}且甲+乙=1\\由\begin{bmatrix}0.8 & 0.3 \\ 0.2& 0.7\end{bmatrix} \begin{bmatrix}甲 \\ 乙\end{bmatrix} =\begin{bmatrix}甲 \\ 乙\end{bmatrix} \Rightarrow \cases{2甲=3乙\\ 甲+乙=1} \Rightarrow \cases{甲=0.6\\ 乙=0.4},故選\bbox[red, 2pt]{(A )}$$
解:
$$\cos 60^\circ = {\vec a\cdot \vec b\over |\vec a||\vec b|} \Rightarrow {1\over 2}={8-\sqrt 3k\over 2\times \sqrt{64+k^2}} \Rightarrow k^2-8\sqrt 3k=0 \Rightarrow k(k-8\sqrt 3)=0 \Rightarrow k=0,8\sqrt 3\\,故選\bbox[red, 2pt]{(C )}$$
解:
$$8x^2-4\sqrt 3x+1=0 \Rightarrow x={4\sqrt 3\pm 4\over 16} \Rightarrow \cases{\sin A={\sqrt 3-1\over 4} \\ \sin B={\sqrt 3+1 \over 4}} \Rightarrow {\overline{BC} \over \sin A}=2R \Rightarrow {1\over {\sqrt 3-1\over 4}}=2R \\ \Rightarrow R={2\over \sqrt 3-1} =\sqrt 3+1,故選\bbox[red, 2pt]{(E )}$$
解:
$$\vec a\cdot \vec b=|\vec a||\vec b|\cos \theta =3\times 9\times \cos \theta=27\cos \theta \Rightarrow 當\theta=0^\circ時,\vec a\cdot \vec b有最大值27,故選\bbox[red, 2pt]{(D )}$$
解:
$$(A)\bigcirc: \cases{|\vec u+\vec v|^2 =(\vec u+\vec v)\cdot (\vec u+\vec v)=|\vec u|^2+2\vec u\cdot \vec v+|\vec v|^2=1+0+1=2 \\ |\vec u-\vec v|^2 =(\vec u-\vec v)\cdot (\vec u-\vec v)=|\vec u|^2-2\vec u\cdot \vec v+|\vec v|^2=1-0+1=2} \Rightarrow |\vec u+\vec v|=|\vec u-\vec v|\\(B) \bigcirc:(\vec u+\vec v)\cdot (\vec u-\vec v) = |\vec u|^2-|\vec v|^2=0 \Rightarrow (\vec u+\vec v)\bot (\vec u-\vec v) \\(C)\times: \cos \theta={(\vec u+\vec v)\cdot \vec u \over |\vec u+\vec v||\vec u|} ={|\vec u|^2+\vec v\cdot \vec u\over \sqrt 2} ={1\over \sqrt 2} \Rightarrow \theta =45^\circ\\ (D)\bigcirc: |a\vec u+b\vec v|^2 =(a\vec u+b\vec v)\cdot (a\vec u+b\vec v) =a^2+0+0+b^2 \Rightarrow a\vec u+b\vec v=\sqrt{a^2+b^2} \\(E)\times: \vec u與\vec v的角平分線為\vec u+\vec v\\,故選\bbox[red, 2pt]{(ABD )}$$
解:
$$\cases{270^\circ < \theta <360^\circ \\ \cos\theta =1/3} \Rightarrow \sin \theta= -2\sqrt 2/3\\ (A)\bigcirc: \sin 2\theta= 2\sin \theta \cos \theta= 2\times {-2\sqrt 2\over 3} \times {1\over 3} =-{4\sqrt 2\over 9} \\(B)\times: 見(A)\\ (C) \times:\cos 2\theta= 2\cos^2\theta -1={2\over 9}-1=-{7\over 9} \\(D)\bigcirc: 見(C)\\ (E)\bigcirc:\tan 2\theta = {\sin 2\theta \over \cos 2\theta} ={-4\sqrt 2/9\over -7/9} ={4\sqrt 2\over 7}\\,故選\bbox[red, 2pt]{(ADE )}$$
解:
$$(A)\times: x^2+y^2+2x-10y+30=0 \Rightarrow (x+1)^2+(y-5)^2+4=0\Rightarrow 非圓\\(B)\times: \cases{A(1,-3)\\ B(2,6) \\C(4, 24)} \Rightarrow \cases{\overrightarrow{AB}=(1,-9) \\ \overrightarrow{BC}=(2,-18)} \Rightarrow \overrightarrow{BC} =2\overrightarrow{AB} \Rightarrow A,B,C在一直線,不能構成一圓\\(C)\times: 圓心至直線距離={6+12+7\over \sqrt{9+16}} =5 > \sqrt 5(半徑) \Rightarrow 不相交\\(D) \bigcirc: 圓心至直線距離={6+12-13\over \sqrt{9+16}} =1 < \sqrt 5(半徑) \Rightarrow 與直線3x-4y=13平行且相距為2的直線,\\\qquad只有一條會與圓相交且交於2點 \\(E)\bigcirc: 圓心O(2,-3)至原點(0,0)距離為\sqrt{13} \Rightarrow \sqrt{a^2+b^2}的\cases{最大值=\sqrt{13}+2(半徑)\\ 最小值=\sqrt{13}-2} \\ \qquad \sqrt{a^2+b^2}的整數值為2,3,4,5,共有8點\\,故選\bbox[red, 2pt]{(DE )}$$
解:
$$(A)\bigcirc: (1,2,-3)為方向向量\Rightarrow (-1,-2,3)亦為方向向量\\ (B)\bigcirc: L與L_1交於(1,2,-3) \\ (C)\times:(0,0,0)為L與L_2交點\\(D)\times: (1,2,-3)為交點,非平行線\\ (E)\bigcirc: \cases{L:(t+1,2t+2,-3t-3)\\ L_4:(2s,4s,-6s+1)} \Rightarrow 無交點,且有相同的方向向量\\,故選\bbox[red, 2pt]{(ABE )}$$
(A)\(p_n+q_n=1\)
(B)\(p_2 > {1\over 2}\)
(C)\(p_3 > {1\over 2}\)
(D)\(a=d\)且\(b=c\)
(E)\(p_{n+1}={2\over 5}+{1\over 5}p_n\)(對所有正整數\(n\)都成立)
解:
$$(A)\bigcirc: 不是奇數就是偶數,因此p_n+q_n=1\\(B)\times:\cases{奇數=偶數+奇數, 奇數+偶數\\ 偶數=奇數+奇數,偶數+偶數},又\cases{抽中奇數的機率為3/5=p_1\\ 抽中偶數的機率為2/5=q_1} \\\qquad \Rightarrow \begin{bmatrix} 2/5 & 3/5\\ 3/5 & 2/5\end{bmatrix} \begin{bmatrix} 3/5\\ 2/5\end{bmatrix} =\begin{bmatrix} p_2\\ q_2\end{bmatrix} \Rightarrow \cases{p_2=12/25\\ q_2=13/25}\Rightarrow p_2 \not \gt {1\over 2} \\(C)\bigcirc: \begin{bmatrix} 2/5 & 3/5\\ 3/5 & 2/5\end{bmatrix} \begin{bmatrix} 12/25\\ 13/25\end{bmatrix} =\begin{bmatrix} p_3\\ q_3\end{bmatrix} \Rightarrow \cases{p_3=63/125\\ q_2=62/125}\Rightarrow p_3 > {1\over 2}\\ (D)\bigcirc: \begin{bmatrix} 2/5 & 3/5\\ 3/5 & 2/5\end{bmatrix}= \begin{bmatrix} a & b\\ c & d\end{bmatrix}\Rightarrow \cases{a=d=2/5\\ b=c=3/5}\\ (E)\times: \begin{bmatrix} 2/5 & 3/5\\ 3/5 & 2/5\end{bmatrix}\begin{bmatrix} p_n\\ q_n\end{bmatrix} =\begin{bmatrix} p_{n+1}\\ q_{n+1}\end{bmatrix} \Rightarrow p_{n+1}= {2\over 5}p_n+ {3\over 5}q_n = {2\over 5}p_n+ {3\over 5}(1-p_n) = {3\over 5}-{1\over 5}p_n \\,故選\bbox[red, 2pt]{(ACD)}$$
解:
$$(A)\times: \overline{BC}邊上的高=c\times \sin B \\(B)\bigcirc: \overline{BC}邊上的高=b\times \sin C\\ (C)\bigcirc: 正弦定理{a\over \sin A} ={b\over \sin B} ={c\over \sin C} \Rightarrow a:b:c = \sin A:\sin B: \sin C \\(D)\bigcirc:\angle C為銳角\Rightarrow \cos C>0 \Rightarrow {a^2+b^2-c^2\over 2ab} >0 \Rightarrow a^2+b^2 > c^2\\ (E)\bigcirc: \angle C為鈍角\Rightarrow \cos C<0 \Rightarrow {a^2+b^2-c^2\over 2ab} <0 \Rightarrow a^2+b^2 < c^2\\,故選\bbox[red, 2pt]{(BCDE)}$$
解:
$$(A)\bigcirc:令P(a^2/4,a) \Rightarrow P到直線y=x+5的距離為{|-{1\over 4}((a-2)^2+16)|\over \sqrt 2} \Rightarrow a=2時,距離最小\\\qquad,此時P(1,2) \\(B)\times: 令Q(b,b+5) \Rightarrow \overline{PQ}=\sqrt{2(b+1)^2+8} \Rightarrow b=-1時,\overline{PQ}最小,因此Q(-1,4)\\ (C) \bigcirc: m=\overline{PQ} =\sqrt{2^2+2^2}=2\sqrt 2\\(D)\bigcirc: 計算如(2) \\ (E)\times: m=2\sqrt 2\\,故選\bbox[red, 2pt]{(ACD )}$$
解:
$$(A)\times:\cos \theta={3\over 5} \Rightarrow \sin \theta={4\over 5} \Rightarrow \sqrt{x^2+4^2}=5 \Rightarrow x=3\\ (B)\times: \tan\theta ={4\over 3}\\(C) \bigcirc: \cos \theta={3\over 5} \Rightarrow \sin \theta={4\over 5} \\(D) \bigcirc: \sin 2\theta = 2\sin \theta \cos \theta = 2\times{4\over 5}\times {3\over 5} > 0\\ (E)\times: \overline{OP}=\sqrt{3^2+4^2}=5\\,故選\bbox[red, 2pt]{(CD )}$$
-- END (僅供參考) --
沒有留言:
張貼留言