Loading [MathJax]/jax/output/CommonHTML/jax.js

2020年9月7日 星期一

106年全國高中職聯合教甄學詳解


教育部受託辦理106學年度
公立高級中等學校教師甄選
數學科試題
第一部分:選擇題
一、單選題

解:
a=3352+33+52a3=352+3+52+3344(3352+33+52)=3+3aa3=3a+3{a6=(3a+3)2=9a2+18a+9a4=a(3a+3)=3a2+3aa66a4+9a2+27=9a2+18a+918a218a+9a2+27=36(B)


解:
((4sin3θ)2+(1cos3θ)2)(sin2θ+cos2θ)(4sin2θ+1cos2θ)2(16sin6θ+1cos6θ)(4sin2θ+1cos2θ)2(1)((2sinθ)2+(1cosθ)2)(sin2θ+cos2θ)(2+1)2(4sin2θ+1cos2θ)9(2)(1)(2)(16sin6θ+1cos6θ)92=81(16sin6θ+1cos6θ)=81西4sin4θ=1cos4θtan4θ=4tanθ=2(θ)(D)


解:
ab=4a=4b(log2a)(log2b)=(log24b)(log2b)=(2log2b)(log2b)=1(log2b)22(log2b)1=0log2b=2±82=1±2;,b=4a(log2a)(log2b)=(log2a)(log24a)=(2log2a)(log2a)=1(log2a)22(log2a)1=0log2a=2±82=1±2;a>b>0(log2a,log2b)=(1+2,12)logab=log2blog2a=121+2=(12)(21)=3+22(A)



解:
1x+1y=x+yxy=11899xy1899x1899y=0(x1899)(y1899)=18992;18992=34×211218992(4+1)(2+1)=1515(C)


解:
{A(1,0)B(1,0)P(t,4t){AP=(t+1,4t)BP=(t1,4t)AP+BP=(2t,82t)|AP+BP|=4t2+(82t)2=8(t2)2+3232=42(B)


解:
8x5y=37y=8x375Nx491068x37520175678x1012271x1265;106x2017106x1265x=109,114,119,124,,1264{a1=109d=5an=12641264=109+5(n1)n=231232(A)


解:
2n1k=n3nk=3n2+3n2+n+3n2+2n++3n2+(n1)n=nk=13n2n+kn=1nnk=131+k1nlimn(2n1k=n3nk)=limn(1nnk=131+k1n)=1031+xdx=[61+x]|10=6(21)6(1.4141)=6×0.414=2.484(D)


解:
{W:6R:2G:2B:2:RW+R+GW+G+BW+BR+GW+R+GG+BW+G+BR+BW+R+B+R+G+BW+R+G+B=28+28+28410410410+612=3465+12=120(B)

二、複選題

解:
9={32=3log242log29=22log23=4log23=alogbc(a,b,c)=(3,2,4)(4,2,3)a2+bc={9+8=1716+6=22(AD)


解:
ˉX=(1+2+2+3+2)÷5=2{σX=1+0+0+1+05=0.4SXX=(xiˉX)2=1+0+0+1=2ˉY=12ˉX+3=1+3=4SXY=(xiˉX)(yiˉY)=(1)(1)+0+0+1(a4)+0=a3=12=SXYSXX=a32a=4ˉY=4=(3+2+1+a+b)÷5b=10(A):b=10>5(B):{a=4b=10a<b(C)×:σY=1+4+9+0+365=10|σYσX|=|100.4|5(D)×:r=SXYSXXSYY=12×50=0.10.3(AB)


解:

¯AD¯AB¯AC=¯BD¯DC64=¯BD5¯BD¯BD=3¯DC=2:{cosDAB=¯AB2+¯AD2¯BD22ׯABׯAD=36+¯AD2912¯ADcosDAC=¯AC2+¯AD2¯DC22ׯACׯAD=16+¯AD248¯AD27+¯AD212¯AD=12+¯AD28¯AD¯AD=32(A)×:{AEB=CAEC=B6sinC=4sinBsinC:sinB=3:2C:B(B)×:{AEB=ACD()ADC=BDEADEBDE¯AD¯DC=¯BD¯DE322=3¯DE¯DE=2¯AD:¯DE=32:2=3:13:2(C):¯ADׯAE=32×(32+2)=24(D):cosA=36+16252×6×4=916sinA=57162R=¯BCsinA=557/16=167=1677¯AP==2R=1677(CD)


解:
{AB=[2226]AC=[51133]D=AB+AC=A(B+C)=[73159]A1D=B+C=A1[73159](A)×:A=[2001]A1=[1/2001]A1[73159](B):A=[3111]A1=[1/41/41/43/4]A1[73159]=[23136](C)×:A=[3121]A1=[1/51/52/53/5]A1[73159](D):A=[1111]A1=[1/21/21/21/2]A1[73159]=[46113](BD)

第二部份:綜合題
一、填充題

解:
f(n)=1n2n+3n4n++2015n2016n+2017n{f(1)=1+(2+3)+(4+5)++(2016+2017)=1+2016÷2=1009f(2)=12+(3222)+(5242)++(2017220162)=1+5+9++4033=(4033+1)×1009÷2=2017×1009f(3)=1009k=1(2k1)31008k=1(2k)3=1008k=1((2k1)3(2k)3)+20173=201731008k=1(12k26k+1)=20173(2×1008×1009×20173×1008×1009+1008)=(1008+1009)3(2×1008×1009×20173×1008×1009+1008)=10083+10093+3×1008×1009×2017(2×1008×1009×20173×1008×1009+1008)=10083+10093+1008×1009×2017+3×1008×10091008=10083+10093+1008×1009×20201008=1008(1008212)+10093+1008×1009×2020=10093+1008×1009×3027=10093+(10091)×1009×3027=10093+10092×30271009×1009×3=10092(1009+30273)=10092×4033f(1)f(2)f(3)=10092×201710092×4033=20174033


解:
:cosA=¯AD2+¯AB2¯BD22ׯADׯAB12=462+132¯BD22×46×13¯BD=313:¯BDsinC=3133/2=62=2R=¯AC(¯ACABCD)¯AC=62


解:
{A(4,4,4)B(2,0,0)C(1,0,3)D(a,b,c){AB=(2,4,4)CD=(a+1,b,c+3)¯BC=18,ABCDa+12=b4=c+34=tD(t1,2t,2t3);¯AD=¯BC=18(t5)2+(2t+4)2+(2t7)2=189t254t+90=18t26t+8=0{t=4t=2{D(3,8,5)D(1,4,1){AD=(1,4,1)AD=(3,0,3)=BC()D(3,8,5)


解:


122,3,2,3,1212AGB=?AOG=θBOG=60θ{OAG=OGA=(180θ)÷2=90θ/2OBG=OGB=(180(60θ))÷2=60+θ/2AGB=OGA+OGB=90θ/2+60+θ/2=150GABcos150=32+22¯AB22×2×332=13¯AB212¯AB2=13+6312=6GAB+6OAB=6(12×3×2sin150+12ׯABׯABsin60)=6(32+34(13+63))=9+3932+27=36+3923

解:
k=11k3+8k2+15k=k=11k(k+3)(k+5)=k=1(1151k161k+3+1101k+5)=115(11+12+13+14+15)16(14+15)+k=1(1151k+5161k+5+1101k+5)=115×60+30+20+15+126016×5+420+0=115×1376016×920=1391800


解:


{S2:(x1)2+(y2)2+(z3)29{O1(1,2,3)R=3S1:(x1)2+(y2)2+z24{O2(1,2,0)r=2d=¯O1O2=3=π12d(R+rd)2(d2+2dr3r2+2dR+6rR3R2)=π12×2(3+23)2(9+1212+18+3627)=4π:


解:
|z|=2z=2(cosθ+isinθ)|z22z+8|=|z22z+2zˉz|=|z||z2+2ˉz|=2|2(cosθ+isinθ)2+4(cosθisinθ)|=2|6cosθ2i2sinθ|=2(6cosθ2)2+4sin2θ=236cos2θ24cosθ+4sin2θ+4=232cos2θ24cosθ+8=48cos2θ6cosθ+2=48(cos2θ34cosθ+964)+298=4(cosθ38)2+78|z22z+8|=478=14


解:


{L1:y=2x7L2:y=12x3L3L1L3L3:y=2x+kx2+2x1=2x+kx2k1=0k=1L3:y=2x1{L3L2A(43,113)L1L2B(83,53)AB=(4,2)(1,2)(1,2)+AB=(3,0)y=(x3)2y=x26x+9


解:
L:xy+5=0m=1Q=m=1;x=94y2+9y=49x24y=4x949x24=1x=95y=45Q(95,45)¯PQ=dist(Q,L)=5+52=10+522

二、計算證明題

解:
(1)(21)2=322(21)4=(322)2=17122(21)5=(17122)(21)=29241=292×2412=16821681=m+1mm=1681(2):(21)2n1=an+1ann,anNn=1an=1;n=k(21)2k1=ak+1akk,akN;n=k+1(21)2k+1=(ak+1ak)(21)2=(ak+1ak)(322)=(3ak+1+22ak)(22ak+2+3ak){2=17ak+9+122a2k+2ak2=17ak+8+122a2k+2ak22=1n=k+1;n=1009m(a1009)滿(21)2017=m+1m


解:


¯ADABCE;{BAD=BCE()ADB=CDEABDCED¯BD¯DE=¯AD¯DC¯ADׯDE=¯BDׯDC(1){BAD=DACB=E()ABDAEC¯AB¯AE=¯AD¯AC¯ABׯAC=¯ADׯAE=¯AD(¯AD+¯DE)=¯AD2+¯ADׯDE=¯AD2+¯BDׯDC((1))¯AD2=¯ABׯAC¯BDׯDC¯AD=¯ABׯAC¯BDׯDC


解:
(1)f(x)=03x22ax+b=04a212b0a23b(2)f(1)=f(3)=0f(x)=k(x+1)(x3)=3x22ax+bkx22kx3k=3x22ax+b{k=3a=6b=9f(x)=x36x29x+cf(x)3{f(1)>0f(3)<0{c>5c<275<c<27


-- END   (僅供參考)  --



1 則留言: