Loading [MathJax]/jax/output/CommonHTML/jax.js

2022年8月27日 星期六

111年台綜大轉學考-微積分B詳解

臺灣綜合大學系統111學年度學士班轉學生聯合招生考試

科目名稱:微積分B

解答(a)limx04x1x=limx0(4x1)(x)=limx0ln44x1=ln4(b)limx610x4x+6=limx6(10x4)(x+6)=limx61210x=18
解答f(x)=x23x+2=(x2)(x1){f(x)0,x2f(x)0,1x2f(x)0,x130|x23x+2|dx=10(x23x+2)dx21(x23x+2)dx+32(x23x+2)dx=[13x332x2+2x]|10[13x332x2+2x]|21+[13x332x2+2x]|32=56(2356)+(3223)=116
解答π0exsin(πx)dx=π0exsinxdx=[exsinx]|π0+π0excosxdx=[exsinxexcosx]|π0π0exsinxdx2π0exsinxdx=[exsinxexcosx]|π0π0exsinxdx=12[exsinxexcosx]|π0=12(1+eπ)
解答u=x+1du=dx2x911x(1+x)2dx=422u2du=[2u]|42=12+1=12
解答2016x2+7x+2dx=20(22x+133x+2)dx=[ln(2x+1)ln(3x+2)]|20=ln5ln8+ln2=ln54
解答y2(x2+y2)=x22yy(x2+y2)+y2(2x+2yy)=2x{x=2/2y=2/22y+12(2+2y)=2y=13
解答(a)u(x,y)=y+xexyux=exy+xyexyux(0,1)=1(b)u(x,y)=y+xexy=(2t+1)+(2s+t)e(2s+t)(2t+1)ut=2+e(2s+t)(2t+1)+(2s+t)(4s+4t+1)e(2s+t)(2t+1)ut(0,0)=3
解答(a)ex=1+x+x22!+x33!++xnn!+e2=1+2+222!+233!++2nn!+2e2=2+22+232!++2n(n1)!+=n=12n(n1)!=n=1nann=1nan=2e2(b)11x(lnx)dx=[ln(lnx)]|1=n=11n(lnn)
解答f(x,y)=3x2+2y24y{fx=6xfy=4y4{fxx=6fyy=4fxy=0D(x,y)=fxxfyyf2xy>0{fx=0fy=0(x,y)=A(0,1)(D>0):{y=x2g(x)=f(x,x2)=2x4x2g(x)=08x32x=0x=0,±1/2y=4h(x)=f(x,4)=3x2+16h(x)=0x=0y=x2=4x=±2{B(0,0)C(1/2,1/4)D(1/2,1/4)E(0,4)F(2,4)G(2,4){f(A)=2f(B)=0f(C)=f(D)=1/8f(E)=16f(F)=f(G)=28{absolute maxima =28absolute minima=2
解答{f(x,y)=54x2+74y232xyg(x,y)=x2+y21{fx=λgxfy=λgyg=0{52x32y=λ(2x)(1)72y32x=λ(2y)(2)x2+y2=1(3){(1)(2)xy=32(x2y2)(3){x=cosθy=sinθcosθsinθ=32(cos2θsin2θ)sin2θ=3cos2θtan2θ=32θ=π3+kπθ=π6+kπ2,kZθ=π/6,2π/3,7π/6,5π/3(x,y)={A(3/2,1/2)B(1/2,3/2)C(3/2,1/2)D(1/2,3/2){f(A)=f(C)=1f(B)=f(D)=21221;

==================== END ===========================

未公告答案,解題僅供參考

沒有留言:

張貼留言