臺灣綜合大學系統111學年度學士班轉學生聯合招生考試
科目名稱:微積分B
解答:(a)limx→04x−1x=limx→0(4x−1)′(x)′=limx→0ln4⋅4x1=ln4(b)limx→−6√10−x−4x+6=limx→−6(√10−x−4)′(x+6)′=limx→−6−12√10−x=−18解答:f(x)=x2−3x+2=(x−2)(x−1)⇒{f(x)≥0,x≥2f(x)≤0,1≤x≤2f(x)≥0,x≤1⇒∫30|x2−3x+2|dx=∫10(x2−3x+2)dx−∫21(x2−3x+2)dx+∫32(x2−3x+2)dx=[13x3−32x2+2x]|10−[13x3−32x2+2x]|21+[13x3−32x2+2x]|32=56−(23−56)+(32−23)=116
解答:∫π0e−xsin(π−x)dx=∫π0e−xsinxdx=[−e−xsinx]|π0+∫π0e−xcosxdx=[−e−xsinx−e−xcosx]|π0−∫π0e−xsinxdx⇒2∫π0e−xsinxdx=[−e−xsinx−e−xcosx]|π0⇒∫π0e−xsinxdx=12[−e−xsinx−e−xcosx]|π0=12(1+e−π)
解答:u=√x+1⇒du=dx2√x⇒∫911√x(1+√x)2dx=∫422u2du=[−2u]|42=−12+1=12
解答:∫2016x2+7x+2dx=∫20(22x+1−33x+2)dx=[ln(2x+1)−ln(3x+2)]|20=ln5−ln8+ln2=ln54
解答:y2(x2+y2)=x2⇒2yy′(x2+y2)+y2(2x+2yy′)=2x將{x=√2/2y=√2/2代入上式⇒√2y′+12(√2+√2y′)=√2⇒y′=13
解答:(a)u(x,y)=y+xexy⇒ux=exy+xyexy⇒ux(0,1)=1(b)u(x,y)=y+xexy=(2t+1)+(2s+t)e(2s+t)(2t+1)⇒∂u∂t=2+e(2s+t)(2t+1)+(2s+t)(4s+4t+1)e(2s+t)(2t+1)⇒∂u∂t(0,0)=3
解答:(a)ex=1+x+x22!+x33!+⋯+xnn!+⋯⇒e2=1+2+222!+233!+⋯+2nn!+⋯⇒2e2=2+22+232!+⋯+2n(n−1)!+⋯=∞∑n=12n(n−1)!=∞∑n=1nan⇒∞∑n=1nan=2e2(b)∫∞11x(lnx)dx=[ln(lnx)]|∞1=∞⇒∞∑n=11n(lnn)發散
解答:f(x,y)=3x2+2y2−4y⇒{fx=6xfy=4y−4⇒{fxx=6fyy=4fxy=0⇒D(x,y)=fxxfyy−f2xy>0因此{fx=0fy=0⇒(x,y)=A(0,1)非鞍點(∵D>0)接著求邊界點:{y=x2⇒g(x)=f(x,x2)=2x4−x2⇒g′(x)=0⇒8x3−2x=0⇒x=0,±1/2y=4⇒h(x)=f(x,4)=3x2+16⇒h′(x)=0⇒x=0y=x2=4⇒x=±2⇒邊界點{B(0,0)C(1/2,1/4)D(−1/2,1/4)E(0,4)F(2,4)G(−2,4)⇒{f(A)=−2f(B)=0f(C)=f(D)=−1/8f(E)=16f(F)=f(G)=28⇒{absolute maxima =28absolute minima=−2
解答:{f(x,y)=54x2+74y2−√32xyg(x,y)=x2+y2−1⇒{fx=λgxfy=λgyg=0⇒{52x−√32y=λ(2x)⋯(1)72y−√32x=λ(2y)⋯(2)x2+y2=1⋯(3)因此{(1)(2)⇒xy=√32(x2−y2)(3)⇒{x=cosθy=sinθ⇒cosθsinθ=√32(cos2θ−sin2θ)⇒sin2θ=√3cos2θ⇒tan2θ=√3⇒2θ=π3+kπ⇒θ=π6+kπ2,k∈Z⇒θ=π/6,2π/3,7π/6,5π/3⇒(x,y)={A(√3/2,1/2)B(−1/2,√3/2)C(−√3/2,−1/2)D(1/2,−√3/2)⇒{f(A)=f(C)=1極小值f(B)=f(D)=2極大值⇒極值為1及2,其中2為極大值、1為極小值;
==================== END ===========================
未公告答案,解題僅供參考
沒有留言:
張貼留言