國立聯合大學108學年度暑假轉學生招生考試
科目:工程數學
一、非選擇題(50%)
解答:(1)y′(x)−1=y2⇒dydx=y2+1⇒∫1y2+1dy=∫1dx⇒tan−1y=x+C將y(1)=0代入上式⇒0=1+C⇒C=−1⇒y=tan(x−1)(2)令{M(x,y)=cos(xy)+x/yN(x,y)=1+(x/y)cos(xy)⇒My≠Nx⇒非恰當令I(y)為積分因子⇒{∂∂y(MI)=I′(cos(xy)+x/y)+I(−xsin(xy)−xy2)∂∂x(NI)=I(1ycos(xy)−xsin(xy))因此∂∂y(MI)=∂∂x(NI)⇒I′(cos(xy)+x/y)=I(1ycos(xy)−xsin(xy))⇒I′I=1y⇒I(y)=y⇒(ycos(xy)+x)dx+(y+xcos(xy))dy=0⇒∫ycos(xy)+xdx=∫y+xcos(xy)dy⇒sin(xy)+12x2+g(y)=12y2+sin(xy)+h(x)⇒{h(x)=x2/2g(y)=y2/2⇒sin(xy)+12(x2+y2)+C=0,再將y(0)=1代入⇒C=−12⇒sin(xy)+12(x2+y2−1)=0(3)令y=xm⇒y′=mxm−1⇒y″=m(m−1)xm−2⇒x2y″−xy′−3y=(m(m−1)−m−3)xm=(m2−2m−3)xm=0⇒(m−3)(m+1)xm=0⇒m=3,−1⇒y=C1x3+C2x⇒y′=3C1x2−C2x2;將初始值{y(1)=1y′(1)=2代入⇒{C1+C2=13C1−C2=2⇒{C1=3/4C2=1/4⇒y=34x3+14x解答:(1)y(t)+∫t0y(τ)cos(t−τ)dτ=e−t⇒L{y(t)}+L{∫t0y(τ)cos(t−τ)dτ}=L{e−t}⇒Y(s)+Y(s)⋅ss2+1=1s+1⇒Y(s)=1s+1⋅s2+1s2+s+1=2s+1−s+1s2+s+1=2s+1−s+1/2(s+1/2)2+3/4−23⋅3/4(s+1/2)2+3/4⇒L−1{Y(s)}=y(t)=2e−t−e−t/2cos(√3t/2)−23e−t/2sin(√3t/2)(2)y″(t)+3y′(t)+2y(t)=δ(t−1)−δ(t−2)⇒L{y″(t)}+3L{y′(t)}+2L{y(t)}=L{δ(t−1)}−L{δ(t−2)}⇒s2Y(s)−sy(0)−y′(0)+3(sY(s)−y(0))+2Y(s)=e−s−e−2s⇒(s2+3s+2)Y(s)=e−s−e−2s⇒Y(s)=(e−s−e−2s)1s2+3s+2=(e−s−e−2s)(1s+1−1s+2)⇒L−1{Y(s)}=y(t)=H(t−1)(e−(t−1)−e−2(t−1))−H(t−2)(e−(t−2)+e−2(t−2))
二、選擇題(50%)
解答:{y′1(t)=−4y1+4y2−e−ty′2(t)=−1.6y1+1.2y2+e−t⇒A=[−44−8565],g=[−e−te−t]det解答:(A-\lambda_1 I)\mathbf x=0 \Rightarrow \left[\begin{matrix}-2 & 4 \\\frac{-8}{5} & \frac{16}{5}\end{matrix} \right]\begin{bmatrix}x_1\\ x_2 \end{bmatrix}=0 \Rightarrow x_1=2x_2,取v_1=\begin{bmatrix}2\\ 1 \end{bmatrix}\\ (A-\lambda_2 I)\mathbf x=0 \Rightarrow \left[\begin{matrix}\frac{-16}{5} & 4 \\\frac{-8}{5} & 2\end{matrix}\right] \begin{bmatrix}x_1\\ x_2 \end{bmatrix}=0 \Rightarrow 4x_1=5x_2,取v_2=\begin{bmatrix} 1\\ 0.8\end{bmatrix},故選\bbox[red,2pt]{(A)}
解答:由(1)及(2)可知\mathbf Y= [v_1e^{\lambda_1t}\; v_2e^{\lambda_2 t} ]=\begin{bmatrix} 2 e^{-2t} & e^{-0.8t}\\ e^{-2t} & 0.8 e^{-0.8t}\end{bmatrix},故選\bbox[red, 2pt]{(B)}
解答:\mathbf Y^{-1}={1\over \det(Y)}\begin{bmatrix}0.8 e^{-0.8t} & -e^{-0.8t}\\ -e^{-2t} & 2 e^{-2t}\end{bmatrix}={5\over 3} e^{2.8t}\begin{bmatrix}0.8 e^{-0.8t} & -e^{-0.8t}\\ -e^{-2t} & 2 e^{-2t}\end{bmatrix} ={1\over 3}\begin{bmatrix}4 e^{2t} & -5e^{2t}\\ -5e^{0.8t} & 10 e^{0.8t}\end{bmatrix}\\,故選\bbox[red, 2pt]{(C)}
解答:y_h=C_1v_1 e^{\lambda_1 t} +C_2v_2e^{\lambda_2t} =C_1 \begin{bmatrix}2\\ 1 \end{bmatrix}e^{-2t} + C_2\begin{bmatrix} 1 \\ 0.8\end{bmatrix}e^{-0.8t},故選\bbox[red, 2pt]{(A)}
解答:\mathbf g=\begin{bmatrix}-e^{-t}\\ e^{-t} \end{bmatrix} \Rightarrow y_p= \begin{bmatrix} ae^{-t}\\ be^{-t} \end{bmatrix} \Rightarrow y_p'= \begin{bmatrix} -ae^{-t}\\ -be^{-t} \end{bmatrix} \\ 將y_p及y_p'代回原式y'=Ay+g \Rightarrow \begin{bmatrix} -ae^{-t}\\ -be^{-t} \end{bmatrix} = \begin{bmatrix} -4& 4\\ -1.6 & 1.2\end{bmatrix} \begin{bmatrix} ae^{-t}\\ be^{-t} \end{bmatrix}+\begin{bmatrix}-e^{-t}\\ e^{-t} \end{bmatrix}\\ \Rightarrow \cases{-a=-4a+4b-1\\ -b=-1.6a+1.2b+1} \Rightarrow \cases{3a-4b=-1\\ 1.6a-2.2b=1} \Rightarrow \cases{a=-31\\ b=-23} \\ \Rightarrow y_p= \begin{bmatrix} -31e^{-t}\\ -23e^{-t} \end{bmatrix}= \begin{bmatrix} -31\\ -23\end{bmatrix} e^{-t},故選\bbox[red, 2pt]{(C)}
解答:y=y_h+ y_p=C_1 \begin{bmatrix} 2\\ 1 \end{bmatrix} e^{-2t} +C_2 \begin{bmatrix} 1\\ 0.8 \end{bmatrix} e^{-2t}+ \begin{bmatrix} -31\\ -23\end{bmatrix} e^{-t}\\ 將\cases{y_1(0)=0\\ y_2(0)=1} 代入\Rightarrow \begin{bmatrix} 0\\ 1 \end{bmatrix}=C_1 \begin{bmatrix} 2\\ 1 \end{bmatrix}+C_2 \begin{bmatrix} 1\\ 0.8 \end{bmatrix} + \begin{bmatrix} -31\\ -23\end{bmatrix} \Rightarrow \cases{2C_1+C_2 =31\\ C_1+0.8C_2 =24} \\ \Rightarrow \cases{C_1=4/3\\ C_2= 85/3} \Rightarrow y =\begin{bmatrix} y_1\\ y_2 \end{bmatrix}={4\over 3}\begin{bmatrix} 2\\ 1 \end{bmatrix} e^{-2t} +{85\over 3} \begin{bmatrix} 1\\ 0.8 \end{bmatrix} e^{-2t} -\begin{bmatrix} 31\\ 23\end{bmatrix} e^{-t},故選\bbox[red, 2pt]{(B)}
===================== END ======================
解題僅供參考
沒有留言:
張貼留言