Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

2022年9月12日 星期一

108年聯合大學轉學考-工程數學詳解

國立聯合大學108學年度暑假轉學生招生考試

科目:工程數學

一、非選擇題(50%)

解答(1)y(x)1=y2dydx=y2+11y2+1dy=1dxtan1y=x+Cy(1)=00=1+CC=1y=tan(x1)(2){M(x,y)=cos(xy)+x/yN(x,y)=1+(x/y)cos(xy)MyNxI(y){y(MI)=I(cos(xy)+x/y)+I(xsin(xy)xy2)x(NI)=I(1ycos(xy)xsin(xy))y(MI)=x(NI)I(cos(xy)+x/y)=I(1ycos(xy)xsin(xy))II=1yI(y)=y(ycos(xy)+x)dx+(y+xcos(xy))dy=0ycos(xy)+xdx=y+xcos(xy)dysin(xy)+12x2+g(y)=12y2+sin(xy)+h(x){h(x)=x2/2g(y)=y2/2sin(xy)+12(x2+y2)+C=0y(0)=1C=12sin(xy)+12(x2+y21)=0(3)y=xmy=mxm1y=m(m1)xm2x2yxy3y=(m(m1)m3)xm=(m22m3)xm=0(m3)(m+1)xm=0m=3,1y=C1x3+C2xy=3C1x2C2x2;{y(1)=1y(1)=2{C1+C2=13C1C2=2{C1=3/4C2=1/4y=34x3+14x
解答(1)y(t)+t0y(τ)cos(tτ)dτ=etL{y(t)}+L{t0y(τ)cos(tτ)dτ}=L{et}Y(s)+Y(s)ss2+1=1s+1Y(s)=1s+1s2+1s2+s+1=2s+1s+1s2+s+1=2s+1s+1/2(s+1/2)2+3/4233/4(s+1/2)2+3/4L1{Y(s)}=y(t)=2etet/2cos(3t/2)23et/2sin(3t/2)(2)y(t)+3y(t)+2y(t)=δ(t1)δ(t2)L{y(t)}+3L{y(t)}+2L{y(t)}=L{δ(t1)}L{δ(t2)}s2Y(s)sy(0)y(0)+3(sY(s)y(0))+2Y(s)=ese2s(s2+3s+2)Y(s)=ese2sY(s)=(ese2s)1s2+3s+2=(ese2s)(1s+11s+2)L1{Y(s)}=y(t)=H(t1)(e(t1)e2(t1))H(t2)(e(t2)+e2(t2))

二、選擇題(50%)

解答{y1(t)=4y1+4y2ety2(t)=1.6y1+1.2y2+etA=[448565],g=[etet]det
解答(A-\lambda_1 I)\mathbf x=0 \Rightarrow \left[\begin{matrix}-2 & 4 \\\frac{-8}{5} & \frac{16}{5}\end{matrix} \right]\begin{bmatrix}x_1\\ x_2 \end{bmatrix}=0 \Rightarrow x_1=2x_2,取v_1=\begin{bmatrix}2\\ 1 \end{bmatrix}\\ (A-\lambda_2 I)\mathbf x=0 \Rightarrow \left[\begin{matrix}\frac{-16}{5} & 4 \\\frac{-8}{5} & 2\end{matrix}\right] \begin{bmatrix}x_1\\ x_2 \end{bmatrix}=0 \Rightarrow 4x_1=5x_2,取v_2=\begin{bmatrix} 1\\ 0.8\end{bmatrix},故選\bbox[red,2pt]{(A)}
解答由(1)及(2)可知\mathbf Y= [v_1e^{\lambda_1t}\; v_2e^{\lambda_2 t} ]=\begin{bmatrix} 2 e^{-2t} & e^{-0.8t}\\ e^{-2t} & 0.8 e^{-0.8t}\end{bmatrix},故選\bbox[red, 2pt]{(B)}
解答\mathbf Y^{-1}={1\over \det(Y)}\begin{bmatrix}0.8 e^{-0.8t}  & -e^{-0.8t}\\ -e^{-2t} & 2 e^{-2t}\end{bmatrix}={5\over 3} e^{2.8t}\begin{bmatrix}0.8 e^{-0.8t}  & -e^{-0.8t}\\ -e^{-2t} & 2 e^{-2t}\end{bmatrix} ={1\over 3}\begin{bmatrix}4 e^{2t}  & -5e^{2t}\\ -5e^{0.8t} & 10 e^{0.8t}\end{bmatrix}\\,故選\bbox[red, 2pt]{(C)}
解答y_h=C_1v_1 e^{\lambda_1 t} +C_2v_2e^{\lambda_2t} =C_1 \begin{bmatrix}2\\ 1 \end{bmatrix}e^{-2t} + C_2\begin{bmatrix} 1 \\ 0.8\end{bmatrix}e^{-0.8t},故選\bbox[red, 2pt]{(A)}
解答\mathbf g=\begin{bmatrix}-e^{-t}\\ e^{-t} \end{bmatrix} \Rightarrow y_p=  \begin{bmatrix} ae^{-t}\\ be^{-t} \end{bmatrix} \Rightarrow y_p'= \begin{bmatrix} -ae^{-t}\\ -be^{-t} \end{bmatrix} \\ 將y_p及y_p'代回原式y'=Ay+g \Rightarrow   \begin{bmatrix} -ae^{-t}\\ -be^{-t} \end{bmatrix} = \begin{bmatrix} -4& 4\\ -1.6 & 1.2\end{bmatrix}  \begin{bmatrix} ae^{-t}\\ be^{-t} \end{bmatrix}+\begin{bmatrix}-e^{-t}\\ e^{-t} \end{bmatrix}\\ \Rightarrow \cases{-a=-4a+4b-1\\ -b=-1.6a+1.2b+1} \Rightarrow \cases{3a-4b=-1\\ 1.6a-2.2b=1} \Rightarrow \cases{a=-31\\ b=-23} \\ \Rightarrow y_p=  \begin{bmatrix} -31e^{-t}\\ -23e^{-t} \end{bmatrix}= \begin{bmatrix} -31\\ -23\end{bmatrix} e^{-t},故選\bbox[red, 2pt]{(C)}
解答y=y_h+ y_p=C_1  \begin{bmatrix} 2\\ 1 \end{bmatrix} e^{-2t} +C_2 \begin{bmatrix} 1\\ 0.8 \end{bmatrix} e^{-2t}+ \begin{bmatrix} -31\\ -23\end{bmatrix} e^{-t}\\ 將\cases{y_1(0)=0\\ y_2(0)=1} 代入\Rightarrow \begin{bmatrix} 0\\ 1 \end{bmatrix}=C_1  \begin{bmatrix} 2\\ 1 \end{bmatrix}+C_2 \begin{bmatrix} 1\\ 0.8 \end{bmatrix} + \begin{bmatrix} -31\\ -23\end{bmatrix} \Rightarrow \cases{2C_1+C_2 =31\\ C_1+0.8C_2 =24} \\ \Rightarrow \cases{C_1=4/3\\ C_2= 85/3} \Rightarrow y =\begin{bmatrix} y_1\\ y_2 \end{bmatrix}={4\over 3}\begin{bmatrix} 2\\ 1 \end{bmatrix} e^{-2t} +{85\over 3} \begin{bmatrix} 1\\ 0.8 \end{bmatrix} e^{-2t} -\begin{bmatrix} 31\\ 23\end{bmatrix} e^{-t},故選\bbox[red, 2pt]{(B)}


===================== END ======================

解題僅供參考

沒有留言:

張貼留言