Loading [MathJax]/jax/output/CommonHTML/jax.js

2022年9月10日 星期六

109年台綜大轉學考-微積分A詳解

臺灣綜合大學系統109學年度學士班轉學生聯合招生考試

科目名稱:微積分A

解答(a)limn3n+22n+1=limn3+2/n2+1/n=32(b)limx0cos(2x)1x2=limx0(cos(2x)1)(x2)=limx0sin(2x)x=limx0(sin(2x))(x)=limx02cos(2x)1=2
解答{x=t2+2t+3y=t43t3{dx/dt=2t+2dy/dt=4t39t2dy/dx=4t39t22t+2{x=6y=2t=1dy/dx=492+2=54
解答¯BP¯AP=¯CQ¯BQ=¯AR¯CR=x{¯AP=3/(x+1)¯BP=3x/(x+1)¯BQ=5/(x+1)¯CQ=5x/(x+1)¯CR=4/(x+1)¯AR=4x/(x+1){APR/ABC=¯AP¯AR¯AB¯AC=x(x+1)2BPQ/ABC=¯BP¯BQ¯AB¯BC=x(x+1)2CQR/ABC=¯CQ¯CR¯AC¯BC=x(x+1)2APR=BQP=CQR=x(x+1)2ABC=6x(x+1)2f(x)=PQR=618x(x+1)2f(x)=18(x1)(x+1)2=0x=1f(1)=6184=32{critical point at:x=1minimum of f(x)=3/2
解答n=0(2n)nn!xn=n=0an|an+1an|=|(2n+2)n+1xn+1(n+1)!n!(2n)nxn|=|(2n+2)(n+1)(2n+22n)nx|=|2(1+1n)nx|limn|an+1an|<12e|x|<1|x|<12e12e
解答π/20cosx(lncosx2+lnsinx2)dx=π/20cosxln(cosx2sinx2)dx=π/20cosxln(12sinx)dx=ln12π/20cosxdx+π/20cosxlnsinxdx=ln12+[sinx(ln(sinx)1)]|π/20=ln121=1ln2
解答h(x,y,z)=g(x2+y2+z2){hx=xx2+y2+z2g(x2+y2+z2)hy=yx2+y2+z2g(x2+y2+z2)hz=zx2+y2+z2g(x2+y2+z2){2hx2=(1x2+y2+z2x2(x2+y2+z2)3/2)g(x2+y2+z2)+x2x2+y2+z2g(x2+y2+z2)2hy2=(1x2+y2+z2y2(x2+y2+z2)3/2)g(x2+y2+z2)+y2x2+y2+z2g(x2+y2+z2)2hz2=(1x2+y2+z2z2(x2+y2+z2)3/2)g(x2+y2+z2)+z2x2+y2+z2g(x2+y2+z2){2hx2(P)=59g(1)+49g(1)=192hy2(P)=59g(1)+49g(1)=192hz2(P)=89g(1)+19g(1)=2092hx2(P)+2hy2(P)+2hz2(P)=2
解答w=xcos(xy)+z2y47xzw=(cos(xy)xysin(xy)7z,x2sin(xy)+4z2y3,2zy47x)w|P=(6,4,2)P(0,1,1)(6,4,2):6x+4(y1)+2(z1)=03x2yz+3=0;P(6,4,2):x6=y14=z12{x=3ty=2t+1z=t+1,tR
解答{x=rcosθy=rsinθR={(x,y)1x2+y24,x0}S={(r,θ)1r2,θ[π/2,π/2]}R(yx)dA=π/2π/221r2(sinθcosθ)drdθ=73π/2π/2(sinθcosθ)dθ=73[cosθsinθ]|π/2π/2=73(2)=143
解答{x(t)=cos(t)y(t)=sin(t)z(t)=t{x(t)=sin(t)y(t)=cos(t)z(t)=1F=(tcos(t),tsin(t),cos3(t))C=a0x(t)2+y(t)2+z(t)2dt=a02dt=2a=24πa=π4CFdr=a0(tsin(t)cos(t)+tsin(t)cos(t)+cos3(t))dt=a0cos3(t)dt=19(9sin(t)+sin(3t))|π/40=19(922+22)=52/9
解答F=(3x,2y,5z)F=3+2+5=10FdV=10dV=10×43π=403π

========================== END ============================

1 則留言: