111 年度自學進修普通型高級中等學校畢業程度學力鑑定考試試卷
科目: 數學
一、 選擇題:( 12 題,每題 5 分,共 60 分)
解答:$$-8\le x\le 4 \Rightarrow -6\le x+2\le 6 \Rightarrow |x+2|\le 6 \Rightarrow a=6,故選\bbox[red, 2pt]{(A)}$$解答:$$(x^2+4x+4)+(y^2+6y+9)+k =13 \Rightarrow (x+2)^2 +(y+3)^2 =13-k\gt 0 \\\Rightarrow k=12 符合條件,故選\bbox[red, 2pt]{(D)}$$
解答:$$由圖形可知:\cases{m_1\lt 0\\ m_2\lt 0\\ m_3 \gt 0\\ m_4=0}且m_1\gt m_2,故選\bbox[red, 2pt]{(B)}$$
解答:$$\cases{a_2 =6\\ a_4 =a_2r^2=54} \Rightarrow {a_2\over a_2r^2}={6\over 54} \Rightarrow {1\over r^2}={1\over 9} \Rightarrow r=-3 \Rightarrow a_2= a_1r=-3a_1= 6 \Rightarrow a_1=-2\\ \Rightarrow a_1+a_2+\cdots +a_5= a_1(1+r+\cdots+ r^4) =(-2)\times {1-(-3)^5\over 1-(-3)} =(-2)\times {1+243\over 4}\\ =-122,故選\bbox[red, 2pt]{(A)}$$
解答:$$x越大而y越小,則相關係數為負值,故選\bbox[red, 2pt]{(B)}$$
解答:$$出現偶數與出現奇數的機率均為{1\over 2},因此丟一次骰子的期望值{1\over 2}(5+1)=3 \\\Rightarrow 擲三次期望值=3\times 3=9,故選\bbox[red, 2pt]{(B)}$$
解答:$$正弦定理:{ \overline{BC}\over \sin A} ={ \overline{AC}\over \sin B} ={ \overline{AB}\over \sin C} \Rightarrow { \overline{BC}\over 8} ={ \overline{AC} \over 15} ={ \overline{AB}\over 17} \\\Rightarrow \overline{BC}: \overline{AC}:\overline{AB} =8:15:17,而17^2=8^2+15^2,因此\angle C=90^\circ,故選\bbox[red, 2pt]{(D)}$$
解答:$$\log a=\log b+2 =\log b+\log 100=\log 100b \Rightarrow a=100b,故選\bbox[red, 2pt]{(D)}$$
解答:$$\vec a\bot \vec b \Rightarrow \vec a\cdot \vec b=0 \Rightarrow (t-1,2t+3) \cdot (1,2)= t-1+4t+6=0 \Rightarrow 5t+5=0 \Rightarrow t=-1\\,故選\bbox[red, 2pt]{(A)}$$
解答:$$\cases{A={1\over 2}((A+B)+(A-B)) ={1\over 2}\begin{bmatrix}3+1 & 5-1\\ 4-2& 3+5 \end{bmatrix} =\begin{bmatrix}2 & 2\\ 1& 4 \end{bmatrix} \\[1ex] B={1\over 2}((A+B)-(A-B)) ={1\over 2}\begin{bmatrix}3-1 & 5+1\\ 4+2& 3-5 \end{bmatrix} =\begin{bmatrix} 1 & 3\\ 3& -1 \end{bmatrix}} \\ \Rightarrow \cases{A^2= \begin{bmatrix} 6 & 12\\ 6 & 18 \end{bmatrix} \\[1ex] B^2= \begin{bmatrix} 10 & 0\\0 & 10 \end{bmatrix}} \Rightarrow A^2-B^2 =\begin{bmatrix} -4 & 12\\ 6& 8 \end{bmatrix},故選\bbox[red, 2pt]{(C)}$$
解答:$$(A)\times: \overline{AD}\bot \overline{CD}\\ (B)\times: \overline{AD}與\overline{DE}相交\\ (D)\times: \overline{AD}\parallel \overline{BC}\\,故選\bbox[red, 2pt]{(C)}$$
解答:$$R\cos n^\circ =r \Rightarrow \cos n^\circ={r\over R}= {1\over 2} \Rightarrow n=60,故選\bbox[red, 2pt]{(C)}$$
二、填充題:( 10 題,每題 4 分,共 40 分)
解答:$$算幾不等式:{a+2b\over 2}\ge \sqrt{a\cdot 2b} \Rightarrow a+2b\ge 2 \sqrt{2\cdot 32} =16 \Rightarrow a+2b的最小值為\bbox[red,2pt]{16}$$解答:$$\cases{L_1斜率m_1= -2/3\\ L_2斜率m_2= 3/k} \Rightarrow m_1\times m_2=-1 \Rightarrow -{2\over k}=-1 \Rightarrow k=\bbox[red, 2pt] 2$$
解答:$$f(1)=4 \Rightarrow 1+a-5-1=4 \Rightarrow a=\bbox[red,2pt]9$$
解答:$$\cases{(x-10)^2 \ge 0\\ x^2+x+1=(x+{1\over 2})^2+{3\over 4}\gt 0} \Rightarrow (x-10)^2 (x^2+x-6)(x^2+x+1)\lt 0 \\ \Rightarrow x^2+x-6\lt 0 \Rightarrow (x+3)(x-2)\lt 0 \Rightarrow -3\lt x\lt 2 \Rightarrow x=-2,-1,0,1\\ \Rightarrow 共有\bbox[red, 2pt] 4個整數解$$
解答:$$r\theta =3\times 2= \bbox[red, 2pt]{6}$$
解答:$$圖形經過三點:\cases{(0,8)\\ (1,4)\\ (2,2)} \Rightarrow \cases{8=k\times a^0=k\\ 4=k\times a^1=ak\\ 2=k\times a^2} \Rightarrow \cases{k=8\\ a=4/8=1/2} \Rightarrow (k,a)=\bbox[red,2pt]{(8,1/2)}$$
========================== END ============================
解題僅供參考,其他學力鑑定試題及詳解
沒有留言:
張貼留言