臺灣綜合大學系統107學年度學士班轉學生聯合招生考試
科目名稱:微積分B
解答:依題意:ddtV=−2m3/sec,再由相似三角形⇒21=rh⇒r=2h⇒V=13πr2h=43πh3⇒ddtV=4πh2dhdt⇒−2=4π⋅(12)2dhdt(此時r=1⇒h=1/2)⇒dhdt=−2πm/sec
解答:u=√x⇒du=12√xdx=12udx⇒dx=2udu⇒∫sin(√x)dx=∫2usinudu=2(sinu−ucosu)+C=2(sin√x−√xcos√x)+C
解答:f(x,y,z)=x2+2y2+xy+ez−2⇒{fx=2x+yfy=4y+xfz=ez⇒(fx(P),fy(P),fz(P))=(2,1,1)⇒切平面:2(x−1)+y+z=0⇒2x+y+z=2
解答:∫3x2+1x4+x2dx=∫1x2+2x2+1dx=−1x+2tan−1x+C
解答:∂∂xf(0,0)=limt→0f(t,0)−f(0,0)t=limt→02t−0t=2
解答:f(x)=∫x3−3x0ecos(t2+1)dt⇒f′(x)=ecos((x3−3x)2+1)⋅(3x2−3)=g(x)⋅(3x2−3)由於g(x)=ecos((x3−3x)2+1)>0,∀x∈R,因此f′(x)=0⇒3x2−3=0⇒x=±1又f″(x)=g′(x)(3x2−3)+g(x)(6x)⇒{f″(1)=6g(6)>0f″(−1)=−6g(−1)<0⇒x=1有相對極小值
解答:f(x)=x31+x2=x31−(−x2)=x3(1−x2+x4−x6+x8−⋯)=x3−x5+x7−x9+x11−⋯=∞∑k=1(−1)k+1x2k+1
解答:∫10∫1xcos(y2+1)dydx=∫10∫y0cos(y2+1)dxdy=∫10ycos(y2+1)dy=∫2112cosudu(u=y2+1)=[12sinu]|21=12(sin2−sin1)
解答:令{f(x,y,z)=2x+3y+5zg(x,y,z)=x2+y2+z2−19,則{fx=λgxfy=λgyfz=λgzg=0⇒{2=λ(2x)⋯(1)3=λ(2y)⋯(2)5=λ(2z)⋯(3)x2+y2+z2=19⋯(4){(1)÷(2)(2)÷(3)⇒{x=2y/3z=5y/3代入(4)⇒(49+1+259)y2=19⇒y2=92⇒y=±3√2⇒{x=±2/√2z=±5/√2⇒最大值f(2/√2,3/√2,5/√2)=4+9+25√2=19√2
==================== END ====================
解題僅供參考,其他轉學考歷屆試題及詳解
沒有留言:
張貼留言