Loading [MathJax]/jax/output/CommonHTML/jax.js

2022年11月7日 星期一

108年高師大轉學考-微積分詳解

國立高雄師範大學 108 學年度學士班轉學生招生考試試題

系所別:數學系及光通系二年級
科 目:微積分(全一頁)

解答(1)False:f(x)=|x|f(0)=0,f(0)(2)True:fx=cf(c)limxcf(x)f(c)xc=f(c)limxc(f(x)f(c))=limxc((xc)f(x)f(c)xc)=limxc(xc)limxcf(x)f(c)xc=0f(c)limxc(xc)=0limxcx=c(3)False:f(x)={x2sin1x,if x00,if x=0f(x),f(c)(4)True:f(x)={x,if x>0x,if x0{limx0+f(x)=limx0+x=0limx0f(x)=limx0(x)=0limx0f(x)=0=f(0)(5)False:f(0)=limh0f(0+h)f(0)h=limh0|0+h||0|)h=limh0|h|h=±1(6)False::f(x)=x3f(0)=0,f(0)
解答f(x)=exdkdxnf(x)|x=0=e0=1k=0f[k](0)k!(x0)k=k=01k!xk
解答f(x,y)=x2+y2+2{fx=2xfy=2y{fxx=2fxy=0fyy=2d=fxxfyyf2xy=4>0{fx=0fy=0x,y)=(0,0)Sf(0,0)=2
解答(a)1x1/n1x=1x1/n(1x1/n)(1+x1/n+x2/n++x(n1)/n)=11+x1/n+x2/n++x(n1)/nlimx1(1x1/2)(1x1/3)(1x1/n)(1x)n1=limx1(1x1/21x1x1/31x1x1/n1x)=limx1(11+x1/211+x1/3+x2/311+x1/n+x2/n++x(n1)/n)=123n=1n!(b)limx2cos(π/x)x2=limx2(cos(π/x))(x2)=limx2πx2sin(π/x)1=π4
解答(a){P(x,y)=y/(x2+y2)Q(x,y)=x/(x2+y2){Py=1/(x2+y2)+2y2/(x2+y2)2Qx=1/(x2+y2)2x2/(x2+y2)2Green's theorem R(C)CPdx+Qdy=RQxPydA=R(2x2+y22(x2+y2)(x2+y2)2)dA=R0dA=0(b)CaCCPdy+Qdx=0CPdy+Qdx=CPdy+Qdx=2π0acosθa2(asinθ)+acosθa2acosθdθ2π01dθ=2π({x=acosθy=asinθ{dx=asinθdθdy=asinθdθx2+y2=a2)

 解答
{u=xyv=x2y2|uxuyvxvy|=|yx2x2y|=2(x2+y2)|xuxvyuyv|=1/|uxuyvxvy|=12(x2+y2)(x2+y2)2=(x2y2)2+4x2y2=v2+4u2x2+y2=v2+4u2|xuxvyuyv|=12v2+4u2R(x4y4)exydA=R(x2+y2)(x2y2)exydA=41256v2/281v2/2v2+4u2veu12v2+4u2dudv=41256v2/281v2/212veududv=4112v(e256v2/2e81v2/2)dv=4112ve81v2/2dv4112ve256v2/2dv=658014esds+24025514etdt,{s=81v2t=256v2{ds=2vdvdt=2vdv=14[2es(s1)]|6580+14[2et(t1)]|240255=12(e80(801)+e240(2401))12(e65(651)+e255(2551))


 ================= END =====================

解題僅供參考,其他試題及詳解

沒有留言:

張貼留言