Processing math: 96%

2023年4月19日 星期三

112年台南女中教甄-數學詳解

國立臺南女中 112 學年度第一次教師甄選數學科試題

一、填充題(每題 4 分,共 76 分)

解答
cosAOB=OAOB|OA||OB|=1/211=12AOB=60OAB¯ABP=(A+B)/2=(34,14,24)¯OP=¯OBsin60=33C(a,b,c)P=336C(34,14,24)=(32a,32b,32c){a=3/2b=3/6c=6/6C=(32,36,66)
解答{f(x)y=f(x)f(x)=ax(xb)t=2f(4+t)=f(2t)f(6)=f(0)6a(6b)=0{b=6a=0,ff(x)=ax(x6)=a(x3)29af(x108)12f(x)129a=12a=43f(x)=43x(x6)f(9)=123=36
解答{B=23C=37A=180BC=120:¯BCsinA=2R5sin120=103=2RR=53A=120BOC=240cosBOC=OBOC|OB||OC|=OBOCR212=OBOC25/3OBOC=256
解答ω=1+3i2=cos2π3+isin2π3ω3=11+ω+ω2=0ω296k=1(k)k+1kωk1=96k=1(ω)k+1k=ω22ω3+3ω44ω5+5ω66ω7+7ω88ω9+9ω10+94ω95+95ω9697ω97=ω22+3ω4ω2+56ω+7ω28+9ω+94ω2+9597ω=(14+794)ω2+(2+58++95)+(36+997)ω=(333)ω2+(3+3++3)+(333)ω()=(3×16)ω2+3×16+(3×16)ω=48ω2+4848ω=48(ω2+ω)+48=48(1)+48=96
解答f(x)=10xx216xx260=52(5x)222(8x)2{|5x|5|8x|2{0x106x10:x[6,10]{52(5x)2x=6,22(8x)=0f(6)=240=26
解答|z|=aNz=aeiθz1z2=aeiθ1a2z2iθ=1aeiθ1a2e2iθR1asin(θ)=1a2sin(2θ)asinθ=sin(2θ)=2sinθcosθsinθ(a2cosθ)=0{sinθ=0,,zcosθ=a/2cosθ={1/22/2=1,,θ=2kπ,θ=π3,5π3z=12±32i
解答¯AC=2R,{A(0,0)C(2R,0)B(Rcosθ,Rsinθ)D=(Rcosϕ,Rsinϕ)¯BD=25R2(cosθcosϕ)2+R2(sinθsinϕ)2=20R2(22cosθcosϕ2sinθsinϕ)=2R2(1cos(θϕ))=20(1)AC=32AB+52AD(2R,0)=32(Rcosθ,Rsinθ)+52(Rcosϕ,Rsinϕ)(32Rcosθ+52Rcosϕ,32Rsinθ+52Rsinϕ){3cosθ+5cosϕ=43sinθ+5sinϕ=034+30(cosθcosϕ+sinθsinϕ)=1630cos(θϕ)=18cos(θϕ)=35(1)165R2=20R2=10016R=104¯AC=2R=5
解答nrCnr+1r9:2,2991:9C91,82,C912892:92C92+12=C82,72,C822793:92C93+13=C73,62,C732694:C642595:C552429+C9128+C8227+C7326+C6425+C5524=512+2304+3584+2240+480+16=9136
解答n2+3n+43=k2,k,nN4n2+12n+172=4k2(2n+3)2+163=(2k)2(2k)2(2n+3)2=163(2k+2n+3)(2k2n3)=163×1{2k+2n+3=1632k2n3=1,4k=164k=41n2+3n+43=412=1681
解答y=ax+bx43x2+2x+3=ax+bx43x2+(2a)x+3b=0α,βx43x2+(2a)x+3b=(xα)2(xβ)2{2α+2β=0α2+β2+4αβ=32αβ(α+β)=a2α2β2=3b{α+β=0αβ=3/2{a=2b=3/4L:y=2x+34
解答T=[5/83/83/85/8],T[10]=[p1p2]p1T,T=PDP1=[1111][1/4001][1/21/21/21/2]T=[1111][1/4001][1/21/21/21/2]=[1111][0001][1/21/21/21/2]=[1/21/21/21/2]T[10]=[1/21/2]p1=12
解答{P(0,0,0)A(1,0,1)B(1,1,0)C(0,1,1)O=(A+B+C)/3=(2/3,2/3,2/3)P=O/2=(1/3,1/3,1/3){u=AP=(2/3,1/3,2/3)v=BC=(1,0,1)n=u×v=13(1,4,1)AnE:(x1)+4y+(z1)=0x+4y+z=2{Q=E¯PB=(2/5,2/5,0)R=E¯PC=(0,2/5,2/5)P,A,Q,R16000110112/52/50102/52/51=16825=475=m=13=13475=2175=nmn=421
解答:(1,26),(2,36),(3,46),(4,56),(5,6),5+4++1=15,=15/P62=15/30=121,2(,):(1,2,36):1,22,364,2×4=8;,(1,3,46),(1,4,56)...(4,5,6),=40/P63=131,2,3=90/P64=144=15,5=16=12+13+14+15+16=174120=2920
解答
解答C=90A=90¯BD=122+162=20r=10O¯BDD=75AOC=2×75=150cosAOC=r2+r2¯AC22r232=200¯AC2200¯AC2=100(2+3)¯AC=102+3=58+12=5(6+2)


解答9cos2x3sinx7=099sin2x3sinx7=09sin2x+3sinx2=0(3sinx1)(3sinx+2)=0{sinx=13sinx=23{x=θ1,πθ1,θ1+2π,3πθ1x=θ2,3πθ2,2π+θ2,5πθ2=6π+10π=16π
解答Sn=1+2++n=n(n+1)2Sn1=n2+n22=(n+2)(n1)2SnSn1=n(n+1)(n1)(n+2)Tn=2314×34254536n(n+1)(n1)(n+2)=31nn+2T1998=319982000=29971000
解答5x1,x2,x3,x4,x5;{18n5=n1+18=9x3=95x1,x2,9,x4,x1+18,=132x1+x2+x4+275=132x1+x2+x4=38x1x2x3x4x51991919×:x2+x4<362992020×:x2+x4<343992121×:x2+x4<32499212259919235892023×:95792123×:95692223×:969917246891824×:96791924×:979915257891625×:989913269991127x4=21,19,17,15,13,11,6
解答L:y=ax+b{d(L,A(7,3))=6d(L,B(6,6))=3{|7a+b3|=6a2+1|6a+b6|=3a2+17a+b3=2(6a+b6)b=95a|7a+95a3|=|2a+6|=6a2+1(2a+6)2=36(a2+1)8a(4a3)=0{a=0b=9a=3/4b=21/4{L:y=9d(L,C)=9L:4y=3x+21d(L,C)=3d(L,C)=39
解答f(x)=ax3+bx2+cx+df(x)=3ax2+2bx+cf(x)=6ax+2bf(x)3xf(x)+9f(x)=3bx2+(6a+c)x+(2b+9d)=0{b=0a=cd=0f(x)=ax3ax,f(2)=68a2a=6a=1f(x)=x3xg(x)=f(x)=x3x=0{x=0x=1{g(0)=00f(t)dt=0g(1)=10t3tdt=1412=14

二、計算證明題(每題 6 分,共 24 分)

解答qp(p,q)a(qp)2+bqp+c=0aq2+bpq+cp2=0,a,b,c,p,q,Case I: p,q{aq2bpqcp2,0Case II: {pq{aq2bpqcp2,0Case III: {pq{aq2bpqcp2,0a,b,c,,
解答{x3y2logx3y2105<x3y2<1065<logx3y2<65<logx+2(logx+logy)<6(1){logx0logy002(logx+logy)(1)02(logx+logy)<60logx+logy<3,logx+logy,logx+logy=0,1,2Case II logx+logy=0:{logx0logy0logx=logy=0logx,logyCase I logx+logy=1:(1)5<logx+2<63<logx<4logx+logy=13<logy<2logy0Case I & Case II:logx+logy=2(1)1<logx<210<x<100logx+logy=logxy=2xy=1001<y<10y=2,3,,9xy=100(x,y)=(50,2),(25,4),(20,5)
解答ak=1+2++k=k(k+1)2k2k(k+1)(k+1)2kk(k+1)k+1k2akk+121n2nk=1k21n2nk=1ak1n2nk=1k+121n2n(n+1)221n2nk=1ak1n2n(n+3)22limn(1n2n(n+1)22)limn(1n2nk=1ak)limn1n2n(n+3)22122limn(1n2nk=1ak)122limn(1n2nk=1ak)=122=24
解答假設兩焦點為F,F' 且\cases{\overline{FA}=p\\ \overline{FB}=q} \Rightarrow \cases{\overline{F'A}= 2a-p \\ \overline{F'B}=2a- q} \\ \Rightarrow \cases{\cos \angle AFF' = {p^2+ (2c)^2-(2a-p)^2 \over 2p(2c)} \\ \cos \angle BFF' ={q^2+(2c)^2-(2a-q^2) \over 2q(2c)}},\angle AFF'+\angle BFF'=180^\circ \\\Rightarrow {p^2+ (2c)^2-(2a-p)^2 \over 2p(2c)}=-{q^2+(2c)^2-(2a-q^2) \over 2q(2c)} \\ \Rightarrow p^2q+4c^2q-q(2a-p)^2 = -pq^2-4c^2p+p(2a-q)^2 \\ \Rightarrow pq(p+q)+4c^2(p+q)-q(4a^2-4ap+ p^2)-p(4a^2-4aq+q^2)=0\\ \Rightarrow pq(p+q)+4c^2(p+q)- 4a^2(p+q)-pq(p+q)+8apq=0\\ \Rightarrow (4c^2-4a^2)(p+q)+8apq \Rightarrow -4b^2(p+q)+8apq=0\\ \Rightarrow {p+q\over pq}={2a\over b^2} \Rightarrow {1\over p}+{1\over q}={2a\over b^2} \Rightarrow {1\over \overline{FA}} +{1\over \overline{FB}} ={2a\over b^2},\bbox[red,2pt]{故得證} 

=========== END =============

解題僅供參考,其他教甄試題及詳解

1 則留言:

  1. 請問第10題為何可以直接假設恰好兩相異實根呢?不是也有兩相異實根+一組共軛虛根的可能嗎?

    回覆刪除