112年身心障礙人員考試
考 試 別:身心障礙人員考試
等別:三等考試
類科:電力工程
科目:工程數學
甲、申論題部分:(50 分)
解答:y″+2y′+2y={10sin(2t),0<t<10,t≥1=10sin(2t)−10sin(2t)u(t−1)⇒L−1{y″+2y′+2y}=L−1{10sin(2t)−10sin(2t)u(t−1)}⇒s2Y(s)−sy(0)−y′(0)+2(sY(s)−y(0))+2Y(s)=20s2+4−10e−s(ssin2+2cos2)s2+4⇒(s2+2s+2)Y(s)−s+3=20s2+4−10e−s(ssin2+2cos2)s2+4⇒Y(s)=20(s2+4)(s2+2s+2)−10e−s(ssin2+2cos2)(s2+4)(s2+2s+2)+s−3s2+2s+2L−1{20(s2+4)(s2+2s+2)}=L−1{−2s−2(s2+4+2s+1(s+1)2+1+41(s+1)2+1}=−2cos(2t)−sin(2t)+2e−t(cost+2sint)L−1{s−3s2+2s+2}=L−1{s+1(s+1)2+1−4(s+1)2+1}=e−t(cost−4sint)L−1{10e−s(ssin2+2cos2)(s2+4)(s2+2s+2)}=L−1{10sin2⋅se−s(s2+4)(s2+2s+2)+20cos2⋅e−s(s2+4)(s2+2s+2)}=−sin2⋅u(t−1)(cos(2t−2)−2sin(2t−2)−e1−t(cos(t−1)−3sin(t−1)))−cos2⋅u(t−1)(2cos(2t−2)+sin(2t−2)−2e1−t(cos(t−1)+2sin(t−1))))因此L−1{Y(s)}=y(t)=−2cos(2t)−sin(2t)+3e−tcost+u(t−1)(sin(2t)+2cos(2t))−u(t−1)sin2⋅e1−t(cos(t−1)−3sin(t−1))−2u(t−1)cos2⋅e1−t(cos(t−1)+2sin(t−1))解答:(一)[00−2100121010103001]R3+R1,−R3+R2→[10110102−201−1103001]−R1+R3,R2/2→[10110101−101/2−1/2002−100]R3/2+R2,R3/2→[101101010−1/21/2−1/2001−1/200]−R3+R1→[1003/201010−1/21/2−1/2001−1/200]⇒A−1=[3/201−1/21/2−1/2−1/200](二)det(A−λI)=0⇒λ3+5λ2−8λ+4=−(λ−1)(λ−2)2=0⇒特徵值=1,2(三)計算特徵值對應的特徵向量λ1=1⇒(A−λ1I)=0⇒[−10−2111102][x1x2x3]=0⇒{x1+2x3=0x2=x3,取v1=[−211]λ2=2⇒(A−λ2I)=0⇒[20−2101101][x1x2x3]=0⇒x1=−x3,取v2=[010],v3=[−101]⇒P=[v1v2v3]=[−20−1110101]⇒P−1=[−10−1111102]⇒A=P[λ1000λ2000λ2]P−1⇒P=[−20−1110101],D=[100020002](四)A13=PD13P=[−20−1110101][1000213000213][−10−1111102]=[−81900−163828191819281918191016383]
乙、測驗題部分:(50 分)
解答:(A)◯:不平行的兩平面相交為一直線,有無限多組解(B)◯:(2,1,0)均在兩平面上(C)◯:(−1,3,1)均在兩平面上(D)×:直線的維度為1故選(D)解答:M=[−11−100100101000−1−1]⇒rref(M)=[100−1010000110000]⇒rank(M)=3,故選(C)
解答:T(x,y,z)=0⇒{2x=0y−z=0⇒{x=0y=z⇒ker(T)={(0,a,a)∣a∈R}為一直線⇒維度=1,故選(A)
解答:S={(a,0,0,b)∣a,b∈R}⇒d(S,u)=√(a−1)2+12+32+(b−5)2當a=1,b=5時,d(S,u)有最小值√1+9=√10,故選(B)
解答:A,B相似⇒det(B)=det(A)=3⇒det(AB)=det(A)det(B)=9,故選(D)
解答:假設特徵值{λ1=−3λ2=1λ3=2相對應的特徵向量為{v1v2v3則(A2+3A+2I)vi=A2vi+3Avi+2Ivi=λ2ivi+3λivi+2vi=(λ2i+3λi+2)vi⇒A2+3A+2I的特徵值為λ2i+3λi+2,分別是{9−9+2=21+3+2=64+6+2=12⇒det(A2+3A+2I)=2×6×12=144,故選(A)
解答:A=[0.80.30.20.7]=[−11.511][0.5001][−0.40.60.40.4]⇒A∞=[−11.511][0001][−0.40.60.40.4]=[0.60.60.40.4],故選(B)
解答:(A)×:cos(z)=12(eiz+e−iz)⇒ddzcos(z)=12(ieiz−ie−iz)=−12i(eiz−e−iz)=−sin(z)(B)◯:cos(z)=cos(x+iy)=cosxcos(iy)−sinxsin(iy)=cosxcoshy−isinxsinhy⇒{u=cosxcoshyv=−sinxsinhy⇒{∂v∂x=−cosxsinhy∂u∂y=cosxsinhy⇒∂v∂x=−∂u∂y(C)×:u(x,y)=cosxcoshy=cosx⋅ey+e−y2(D)×:v(x,y)=−sinxsinhy=−sinxey−e−y2,故選(B)
解答:e2z+ln(2)=1+i=√2(cosπ4+isinπ4)=√2eπi/4=e12ln(2)+π4i⇒2z+ln(2)=12ln(2)+π4i⇒z=−14ln(2)+π8i,故選(C)
解答:z=t−it2⇒dz=dt−2itdt=(1−2it)dt⇒∫C(1−z)dz=∫10(1−t+it2)(1−2it)dt=∫102t3+3it2−(2i+1)t+1dt=[12t4+it3−(i+12)t2+t]|10=12+i−(i+12)+1=1,故選(B)
解答:z2+i6z=z(z+6i)=0⇒z=0,−6i;由於0及−6i皆在路徑外,故選(A)
解答:若未給定初始值,有無窮多解,故選(A)
解答:{u(x,y)=2yx−9v(x,y)=3−6xy⇒{x2y2u(x,y)=2xy3−9x2y2x2y2v(x,y)=3x2y2−6x3y⇒{∂∂yx2y2u(x,y)=6xy2−18x2y∂∂xx2y2v(x,y)=6xy2−18x2y⇒∂∂yx2y2u(x,y)=∂∂xx2y2v(x,y)⇒x2y2為積分因子,故選(D)
解答:y=a0+a1x+a2x2+⋯+anxn+⋯⇒{xy=a0x+a1x2+a2x3+⋯+anxn+1+⋯y′=a1+2a2x+⋯+nanxn−1+⋯⇒y′+xy=a1+(a0+2x2)x+⋯+(an−1+(n+1)an+1)xn+⋯=0⇒an−1+(n+1)an+1=0⇒an+1=−1n+1an−1,故選(C)
解答:g(t)={0,t<5t−5,t≥5⇒L{g(t)}=∫∞5(t−5)e−stdt=[−e−sts2(s(t−5)+1)]|∞5=0+e−5ts2=e−5ts2,故選(B)
解答:(A)×:f為偶函數⇒bn=0(B)×:f為奇函數⇒an=0(C)×:A=nπL≠2nπL(D)◯:f為奇函數⇒an=0⇒f(x)=∞∑n=1bnsinnπLx⇒limx→L−f(x)=limx→L−∞∑n=1bnsinnπLx=∞∑n=1bnlimx→L−(sinnπLx)=0,故選(D)
解答:沒肺癌且不抽菸沒肺癌且抽菸+沒肺癌且不抽菸=70%×90%30%×60%+70%×90%=6318+63=79,故選(A)
解答:P(2≤X≤4)=0.4⇒4−2A=0.4⇒A=2×104=5,故選(C)
解答:Y=−4X+1⇒Var(Y)=Var(−4X+1)=16Var(X)=16又4X+Y=1⇒Var(4X+Y)=Var(1)=0⇒16Var(X)+Var(Y)+8Cov(X,Y)=0⇒32+8Cov(X,Y)=0⇒Cov(X,Y)=−4,故選(D)
解答:S={(a,0,0,b)∣a,b∈R}⇒d(S,u)=√(a−1)2+12+32+(b−5)2當a=1,b=5時,d(S,u)有最小值√1+9=√10,故選(B)
解答:A,B相似⇒det(B)=det(A)=3⇒det(AB)=det(A)det(B)=9,故選(D)
解答:假設特徵值{λ1=−3λ2=1λ3=2相對應的特徵向量為{v1v2v3則(A2+3A+2I)vi=A2vi+3Avi+2Ivi=λ2ivi+3λivi+2vi=(λ2i+3λi+2)vi⇒A2+3A+2I的特徵值為λ2i+3λi+2,分別是{9−9+2=21+3+2=64+6+2=12⇒det(A2+3A+2I)=2×6×12=144,故選(A)
解答:A=[0.80.30.20.7]=[−11.511][0.5001][−0.40.60.40.4]⇒A∞=[−11.511][0001][−0.40.60.40.4]=[0.60.60.40.4],故選(B)
解答:(A)×:cos(z)=12(eiz+e−iz)⇒ddzcos(z)=12(ieiz−ie−iz)=−12i(eiz−e−iz)=−sin(z)(B)◯:cos(z)=cos(x+iy)=cosxcos(iy)−sinxsin(iy)=cosxcoshy−isinxsinhy⇒{u=cosxcoshyv=−sinxsinhy⇒{∂v∂x=−cosxsinhy∂u∂y=cosxsinhy⇒∂v∂x=−∂u∂y(C)×:u(x,y)=cosxcoshy=cosx⋅ey+e−y2(D)×:v(x,y)=−sinxsinhy=−sinxey−e−y2,故選(B)
解答:e2z+ln(2)=1+i=√2(cosπ4+isinπ4)=√2eπi/4=e12ln(2)+π4i⇒2z+ln(2)=12ln(2)+π4i⇒z=−14ln(2)+π8i,故選(C)
解答:z=t−it2⇒dz=dt−2itdt=(1−2it)dt⇒∫C(1−z)dz=∫10(1−t+it2)(1−2it)dt=∫102t3+3it2−(2i+1)t+1dt=[12t4+it3−(i+12)t2+t]|10=12+i−(i+12)+1=1,故選(B)
解答:z2+i6z=z(z+6i)=0⇒z=0,−6i;由於0及−6i皆在路徑外,故選(A)
解答:若未給定初始值,有無窮多解,故選(A)
解答:{u(x,y)=2yx−9v(x,y)=3−6xy⇒{x2y2u(x,y)=2xy3−9x2y2x2y2v(x,y)=3x2y2−6x3y⇒{∂∂yx2y2u(x,y)=6xy2−18x2y∂∂xx2y2v(x,y)=6xy2−18x2y⇒∂∂yx2y2u(x,y)=∂∂xx2y2v(x,y)⇒x2y2為積分因子,故選(D)
解答:y=a0+a1x+a2x2+⋯+anxn+⋯⇒{xy=a0x+a1x2+a2x3+⋯+anxn+1+⋯y′=a1+2a2x+⋯+nanxn−1+⋯⇒y′+xy=a1+(a0+2x2)x+⋯+(an−1+(n+1)an+1)xn+⋯=0⇒an−1+(n+1)an+1=0⇒an+1=−1n+1an−1,故選(C)
解答:g(t)={0,t<5t−5,t≥5⇒L{g(t)}=∫∞5(t−5)e−stdt=[−e−sts2(s(t−5)+1)]|∞5=0+e−5ts2=e−5ts2,故選(B)
解答:(A)×:f為偶函數⇒bn=0(B)×:f為奇函數⇒an=0(C)×:A=nπL≠2nπL(D)◯:f為奇函數⇒an=0⇒f(x)=∞∑n=1bnsinnπLx⇒limx→L−f(x)=limx→L−∞∑n=1bnsinnπLx=∞∑n=1bnlimx→L−(sinnπLx)=0,故選(D)
解答:沒肺癌且不抽菸沒肺癌且抽菸+沒肺癌且不抽菸=70%×90%30%×60%+70%×90%=6318+63=79,故選(A)
解答:P(2≤X≤4)=0.4⇒4−2A=0.4⇒A=2×104=5,故選(C)
解答:Y=−4X+1⇒Var(Y)=Var(−4X+1)=16Var(X)=16又4X+Y=1⇒Var(4X+Y)=Var(1)=0⇒16Var(X)+Var(Y)+8Cov(X,Y)=0⇒32+8Cov(X,Y)=0⇒Cov(X,Y)=−4,故選(D)
================== END =====================
沒有留言:
張貼留言