Loading [MathJax]/jax/output/CommonHTML/jax.js

2024年2月24日 星期六

110年北科大電機碩士班-線性代數詳解

 國立台北科技大學110學年度碩士班招生考試

系所組別: 2121電機工程系碩士班戊組
第一節 線性代數(選考)

解答:(1)A=[242125733786]R1/2R1[1211/225733786]2R1+R2R2,3R1+R3R3[12112015401592]2R2+R1R1,R2+R3R3[1091720154000172]R2R2,R3R1R1[10900154000172]2R3/17R3[109001540001]4R3+R2R2[109001500001]B=rref(A)=[109001500001]Ax=0Bx=0[109001500001][x1x2x3x4]=0{x1+9x3=0x2=5x3x4=0x=x3(9510)={k(9510)kR}(2)Au=[242125733786][3210]=[3210]=[033]0uNull(A)

解答:(1)VUx2=(VUx)H(VUx)=xHUHVHVUx=xHUHImUx=xHUHUx=xHInx=xHx=x2VUx=x,Q.E.D.(2)V is a m×m unitary matrixV1=VHVHV=Imdet(VHV)=1(3)U is a m×n column-wise orthonormal matrixUHU=Intrace(UHU)=n(4)VHV=Imtrace(VHV)=trace(Im)=m


解答:(1)ProveA is diagonalizable and invertible A=PDP1 where D is a diagonal matrixi.e.,di,j=0,ijD1=E,ei,j=1/di,jD1=E is also diagonalA=PDP1A1=(PDP1)1=PD1P1=PEP1A1 is also diagonalizable and invertible(2)Prove:If a=0,det(AaI)=det(A)=0A is NOT invertible. That is a0Av=avA1Av=A1avv=aA1vA1v=1ava1 is an eigenvalue of A1(3)Prove:A=QRQ1A=RQ1AQ=RQA is similar to RQ(4)Prove:Let λ be a eigenvalue of A, and v be the corresponding eigenvector.Av=λvAAv=AλvA2v=λAv0=λλv=λ2vλ=0(5)Prove:10+0v1+0v2+0v3=00,v1,v2,v3 are linear dependent(6)Disprove:Let {v1=(1,2)v2=(3,4)av1+bv2=0{a+3b=02a+4b=0a=b=0v1 and v2 are independentv1v2=3+8=110 Not orthogoanl(7)Disprove:v1=0v1 and v1 are orthogonal but dependent


解答:
解答:A=[400211]{ATA=[17115]ATb=[1911](ATA)x=ATbx=(ATA)1(ATb)=[12]

解答:(1)H=[3125053667745809]det(H)=3|536774809|+|036674509|+2|056674589|+5|053677580|=3×306+108+2×(328)+5×(74)=0(2)det(H)=0H is not invertible:AH

==================== END ======================
解題僅供參考,其他歷年試題及詳解

沒有留言:

張貼留言