國立台北科技大學110學年度碩士班招生考試
系所組別: 2121電機工程系碩士班戊組
第一節 線性代數(選考)
解答:(1)A=[24−21−2−57337−86]R1/2→R1→[12−11/2−2−57337−86]2R1+R2→R2,−3R1+R3→R3→[12−1120−15401−592]2R2+R1→R1,R2+R3→R3→[1091720−154000172]−R2→R2,R3−R1→R1→[109001−5−4000172]2R3/17→R3→[109001−5−40001]4R3+R2→R2→[109001−500001]⇒B=rref(A)=[109001−500001]⇒Ax=0⇒Bx=0⇒[109001−500001][x1x2x3x4]=0⇒{x1+9x3=0x2=5x3x4=0⇒x=x3(−9510)={k(−9510)∣k∈R}(2)Au=[24−21−2−57337−86][3−2−10]=[3−2−10]=[0−33]≠0⇒u∉Null(A)
解答:(1)ProveA is diagonalizable and invertible ⇒A=PDP−1 where D is a diagonal matrixi.e.,di,j=0,∀i≠j⇒D−1=E,ei,j=1/di,j⇒D−1=E is also diagonalA=PDP−1⇒A−1=(PDP−1)−1=PD−1P−1=PEP−1⇒A−1 is also diagonalizable and invertible(2)Prove:If a=0,det(A−aI)=det(A)=0⇒A is NOT invertible. That is a≠0⇒Av=av⇒A−1Av=A−1av⇒v=aA−1v⇒A−1v=1av⇒a−1 is an eigenvalue of A−1(3)Prove:A=QR⇒Q−1A=R⇒Q−1AQ=RQ⇒A is similar to RQ(4)Prove:Let λ be a eigenvalue of A, and v be the corresponding eigenvector.Av=λv⇒AAv=Aλv⇒A2v=λAv⇒0=λλv=λ2v⇒λ=0(5)Prove:1⋅0+0⋅v1+0⋅v2+0⋅v3=0⇒0,v1,v2,v3 are linear dependent(6)Disprove:Let {v1=(1,2)v2=(3,4)⇒av1+bv2=0⇒{a+3b=02a+4b=0⇒a=b=0⇒v1 and v2 are independent⇒v1⋅v2=3+8=11≠0⇒ Not orthogoanl(7)Disprove:v1=0⇒v1 and v1 are orthogonal but dependent
解答:略
解答:A=[400211]⇒{ATA=[17115]ATb=[1911]⇒(ATA)x=ATb⇒x=(ATA)−1(ATb)=[12]
解答:(1)H=[3−12−505−3−6−67−74−5−809]⇒det(H)=3|5−3−67−74−809|+|0−3−6−6−74−509|+2|05−6−674−5−89|+5|05−3−67−7−5−80|=3×306+108+2×(−328)+5×(−74)=0(2)det(H)=0⇒H is not invertible註:A應該是H
==================== END ======================
解題僅供參考,其他歷年試題及詳解
沒有留言:
張貼留言