國立成功大學111學年度碩士班招生考試
系所: 土木工程系
科目: 工程數學
解答:
(1)div(fu)=(∇f)⋅u+f(∇u)=(4xi+2yj+2zk)⋅(xzi+yzk)+(2x2+y2+z2)(z+y)=(4x2z+2yz2)+(2x2z+2x2y+y2z+y3+z3+yz2)=6x2z+3yz2+2x2y+y2z+y3+z3(2)∇2f=4+2+2=8(2)curl(grad f)=curl(4xi+2yj+2zk)=|ijk∂∂x∂∂y∂∂z4x2y2z|=0(4)div(curl u)=div(|ijk∂∂x∂∂y∂∂zxz0yz|)=div(zi+xj)=0(5)grad(u⋅u)=grad(x2z2+y2z2)=2xz2i+2yz2j+2z(x2+y2)k

解答:
(1)x′+xt=2cos(t)⇒tx′+x=2tcos(t)⇒(tx)′=2tcos(t)⇒tx=∫2tcos(t)dt⇒tx=2tsin(t)+2cos(t)+c1⇒x(t)=2sin(t)+2tcos(t)+c1t(2)dydx=9y2x4⇒1y2dy=9x4dx⇒−1y=95x5+c1=9x5+c25⇒y(x)=−59x5+c2⇒y(2)=−5288+c2=6⇒c2=−17336⇒y(x)=301733−54x5

解答:
(1)a0=12π∫π0sin(2t)dt=12π⋅[−12cos(2t)]|π0=0an=1π∫π0sin(2t)cos(nt)dt=2(n2−4)π((−1)n−1)bn=1π∫π0sin(2t)sin(nt)dt=0⇒f(x)=2π∞∑n=11n2−4((−1)n−1)cos(nx))(2)A(ω)=∫∞−∞f(x)cos(ωx)dx=∫π0sin(2x)cos(ωx)dx=2ω2−4(cos(ωπ)−1)B(ω)=∫∞−∞f(x)sin(ωx)dx=∫π0sin(2x)sin(ωx)dx=2sin(ωπ)ω2−4⇒f(x)=1π∫∞0(2ω2−4(cos(ωπ)−1)cos(ωx)+2sin(ωπ)ω2−4sin(ωx))dω
解答:
det(A)=−(λ−1)(λ−2)(λ−3)=0⇒eigenvalues: 1,2,3λ1=1⇒(A−λ1I)v=0⇒(000110122)(x1x2x3)=0⇒{x1=2x3x2=−2x3⇒v=x3(2−21),取v1=(2−21)λ2=1⇒(A−λ2I)v=0⇒(−100100121)(x1x2x3)=0⇒{x1=02x2=−x3⇒v=x3(0−121),取v2=(0−121)λ3=3⇒(A−λ3I)v=0⇒(−2001−10120)(x1x2x3)=0⇒{x1=0x2=0⇒v=x3(001)取v3=(001)⇒eigenvectors: (2−21),(0−121),(001)解答:(1)ux−72ut−10u=0⇒{a=1b=−72令{i=xs=−bx+at=72x+t⇒{ux=uiix+ussx=ui+72usut=uiit+usst=0+us代回原式⇒ui+72us=72us+10u⇒ui−10u=0⇒integration factor: e−10i⇒e−10iui−10e−10iu=0⇒(e−10iu)′=0⇒e−10iu=ρ(s)⇒u(i,s)=e10iρ(s)⇒u(x,t)=e10xρ(72x+t)⇒ux=10e10xρ(72x+t)+72e10xρ′(72x+t)⇒ux(t=0)=10e10xρ(72x)+72e10xρ′(72x)=6e−2x⇒(e10xρ(72x))′=6e−2x⇒e10xρ(72x)=−3e−2x+c1⇒ρ(ω)=−3e−ω/6+c1e−5ω/36⇒u(x,t)=e10xρ(72x+t)=u(x,t)=e10x(−3e−12x−t/6+c1e−10x−5t./36)⇒u(x,t)=−3e−2x−t/6+c1e−5t/36(2)題目有誤,u(0,y)=5e2/x不應該有變數x!!
=========================== END ==============================
沒有留言:
張貼留言